• Journal of Semiconductors
  • Vol. 40, Issue 7, 071902 (2019)
Xiaowu He1, Yifeng Song2, Ying Yu3, Ben Ma1, Zesheng Chen1, Xiangjun Shang1, Haiqiao Ni1, Baoquan Sun1, Xiuming Dou1, Hao Chen1, Hongyue Hao1, Tongtong Qi1, Shushan Huang1, Hanqing Liu1, Xiangbin Su1, Xinliang Su4, Yujun Shi4, and Zhichuan Niu1、5、6
Author Affiliations
  • 1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China
  • 2School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
  • 3State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 4Laboratory of Solid Quantum Material Center, College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
  • 5Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 6Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • show less
    DOI: 10.1088/1674-4926/40/7/071902 Cite this Article
    Xiaowu He, Yifeng Song, Ying Yu, Ben Ma, Zesheng Chen, Xiangjun Shang, Haiqiao Ni, Baoquan Sun, Xiuming Dou, Hao Chen, Hongyue Hao, Tongtong Qi, Shushan Huang, Hanqing Liu, Xiangbin Su, Xinliang Su, Yujun Shi, Zhichuan Niu. Quantum light source devices of In(Ga)As semiconductorself-assembled quantum dots[J]. Journal of Semiconductors, 2019, 40(7): 071902 Copy Citation Text show less
    References

    [1] et alAn electrically pumped polariton laser. Nature, 497, 348(2013).

    [2] et alEfficient source of single photons: A single quantum dot in a micropost microcavity. Phys Rev Lett, 89, 233602(2002).

    [3] et alVacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432, 200(2004).

    [4] et alExciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys Rev Lett, 95, 067401(2005).

    [5] Ultralow threshold laser using a single quantum dot and a microsphere cavity. Phys Rev A, 59, 2418(1999).

    [6] InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics. Physica E, 9, 131(2001).

    [7] et alProbing different regimes of strong field light-matter interaction with semiconductor quantum dots and few cavity photons. New J Phys, 18, 123031(2016).

    [8] et alSatellite-to-ground quantum key distribution. Nature, 549, 43(2017).

    [9] Quantum computational supremacy. Nature, 549, 203(2017).

    [10] et alGround-to-satellite quantum teleportation. Nature, 549, 70(2017).

    [11] A scheme for efficient quantum computation with linear optics. Nature, 409, 46(2001).

    [12] Quantum computation. Science, 270, 255(1995).

    [13] Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 67, 661(1991).

    [14] et alQuantum cryptography. Rev Mod Phys, 74, 145(2002).

    [15] et alQuantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516(2015).

    [16] Quantum communication. Nat Photonics, 1, 165(2007).

    [17] Single-photon sources. Contemp Phys, 46, 173(2005).

    [18] et al''Plug and play'' systems for quantum cryptography. Appl Phys Lett, 70, 793(1997).

    [19] et alLimitations on practical quantum cryptography. Phys Rev Lett, 85, 1330(2000).

    [20] On-chip single photon sources using planar photonic crystals and single quantum dots. Laser Photon Rev, 4, 499(2010).

    [21] et alSingle photon sources with single semiconductor quantum dots. Front Phys, 9, 170(2014).

    [22] Single photons on demand from a single molecule at room temperature. Nature, 407, 491(2000).

    [23] et alContinuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature, 431, 1075(2004).

    [24] Deterministic single-photon source for distributed quantum networking. Phys Rev Lett, 89, 4(2002).

    [25] et alStable solid-state source of single photons. Phys Rev Lett, 85, 290(2000).

    [26] Energy transfer within ultralow density twin InAs quantum dots grown by droplet epitaxy. ACS Nano, 2, 2219(2008).

    [27] et alOn-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotechnol, 8, 213(2013).

    [28] et alDeterministic coupling of single quantum dots to single nanocavity modes. Science, 308, 1158(2005).

    [29] Solid-state single-photon emitters. Nat Photonics, 10, 631(2016).

    [30] et alWavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 7, 10387(2016).

    [31] et alSingle InAs quantum dot coupled to different " environments” in one wafer for quantum photonics. Appl Phys Lett, 102, 201103(2013).

    [32] Correlation between photons in two coherent beams of light. Nature, 177, 27(1956).

    [33] et alA quantum dot single-photon turnstile device. Science, 290, 2282(2000).

    [34] et alBias-controlled single-electron charging of a self-assembled quantum dot in a two-dimensional-electron-gas-based n-i-Schottky diode. Phys Rev B, 83, 075306(2011).

    [35] et alOptical emission from a charge-tunable quantum ring. Nature, 405, 926(2000).

    [36] et alRegulated and entangled photons from a single quantum dot. Phys Rev Lett, 84, 2513(2000).

    [37] et alFabrication of InGaAs quantum dots on GaAs(001) by droplet epitaxy. J Cryst Growth, 209, 504(2000).

    [38] et alOn-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett, 116, 020401(2016).

    [39] et alSelf-assembled quantum dot structures in a hexagonal nanowire for quantum photonics. Adv Mater, 26, 2710(2014).

    [40]

    [41] et alElectrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett, 96, 011107(2010).

    [42] et alA pillar-array based two-dimensional photonic crystal microcavity. Appl Phys Lett, 94, 241110(2009).

    [43] Optical microcavities. Nature, 424, 839(2003).

    [44] et alNumerical modeling of the coupling efficiency of single quantum emitters in photonic-crystal waveguides. J Opt Soc Am B, 35, 514(2018).

    [45] et alHigh-responsivity photodetection by a self-catalyzed phase-pure p-GaAs nanowire. Small, 14, 9(2018).

    [46] et alElectrically driven telecommunication wavelength single-photon source. Appl Phys Lett, 90, 063512(2007).

    [47] et alAn entangled-light-emitting diode. Nature, 465, 594(2010).

    [48] et alSingle-photon-emitting diode at liquid nitrogen temperature. Appl Phys Lett, 93, 101107(2008).

    [49] et alElectrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter. Appl Phys Lett, 102, 011126(2013).

    [50] In: Single Quantum Dots: Fundamentals, Applications and New Concepts. Berlin: Springer-Verlag, 90, 269(2003).

    [51]

    [52] et alOn-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photonics, 8, 224(2014).

    [53] et alNear-transform-limited single photons from an efficient solid-state quantum emitter. Phys Rev Lett, 116, 213601(2016).

    [54] et alIndistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots. Phys Rev Lett, 111, 237403(2013).

    [55] et alElectric-field-induced energy tuning of on-demand entangled-photon emission from self-assembled quantum dots. Nano Lett, 17, 501(2017).

    [56] et alBright single-photon source at 1.3 μm based on InAs bilayer quantum dot in micropillar. Nanoscale Res Lett, 12, 378(2017).

    [57] et alSingle photon extraction from self-assembled quantum dots via stable fiber array coupling. Appl Phys Lett, 110, 142104(2017).

    [58] et alSelf-assembly of single "square" quantum rings in gold-free GaAs nanowires. Nanoscale, 6, 3190(2014).

    [59] et alSingle InAs quantum dot grown at the junction of branched gold-free GaAs nanowire. Nano Lett, 13, 1399(2013).

    [60] et alIn situ probing and integration of single self-assembled quantum dots-in-nanowires for quantum photonics. Nanotechnology, 26, 385706(2015).

    [61] et alStorage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory. Nat Commun, 6, 8652(2015).

    [62] et alField-field and photon-photon correlations of light scattered by two remote two-level InAs quantum dots on the same substrate. Phys Rev Lett, 109, 267402(2012).

    [63] et alCoherent versus incoherent light scattering from a quantum dot. Phys Rev B, 85, 235315(2012).

    [64] et alBichromatic resonant light scattering from a quantum dot. Phys Rev B, 89, 155305(2014).

    [65] et alExperimental test of the state estimation-reversal tradeoff relation in general quantum measurements. Phys Rev X, 4, 021043(2014).

    [66] et alExperimental demonstration of a hybrid-quantum-emitter producing individual entangled photon Pairs in the telecom band. Sci Rep, 6, 26680(2016).

    [67] Engineered quantum dot single-photon sources. Rep Prog Phys, 75, 126503(2012).

    [68] et alQuantum dot nanostructures and molecular beam epitaxy. Prog Cryst Growth Charact Mater, 47, 166(2003).

    [69] Spontaneous emission probabilities at radio frequencies. Phys Rev, 69, 681(1946).

    [70] Fundamental limitations in spontaneous emission rate of single-photon sources. Optica, 3, 1418(2016).

    [71] et alGrowth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition. Phys Lett A, 380, 3993(2016).

    [72] et alProper In deposition amount for on-demand epitaxy of InAs/GaAs single quantum dots. Chin Phys B, 25, 107805(2016).

    [73] et alSingle-photon property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes. Sci Rep, 4, 3633(2014).

    [74] et alLaser emission from quantum dots in microdisk structures. Appl Phys Lett, 77, 184(2000).

    [75] Assembly of hybrid photonic architectures from nanophotonic constituents. Nature, 480, 193(2011).

    [76] et alTelecommunication wavelength-band single-photon emission from single large InAs quantum dots nucleated on low-density seed quantum dots. Nanoscale Res Lett, 11, 382(2016).

    Xiaowu He, Yifeng Song, Ying Yu, Ben Ma, Zesheng Chen, Xiangjun Shang, Haiqiao Ni, Baoquan Sun, Xiuming Dou, Hao Chen, Hongyue Hao, Tongtong Qi, Shushan Huang, Hanqing Liu, Xiangbin Su, Xinliang Su, Yujun Shi, Zhichuan Niu. Quantum light source devices of In(Ga)As semiconductorself-assembled quantum dots[J]. Journal of Semiconductors, 2019, 40(7): 071902
    Download Citation