• Journal of Semiconductors
  • Vol. 40, Issue 7, 071902 (2019)
Xiaowu He1, Yifeng Song2, Ying Yu3, Ben Ma1, Zesheng Chen1, Xiangjun Shang1, Haiqiao Ni1, Baoquan Sun1, Xiuming Dou1, Hao Chen1, Hongyue Hao1, Tongtong Qi1, Shushan Huang1, Hanqing Liu1, Xiangbin Su1, Xinliang Su4, Yujun Shi4, and Zhichuan Niu1、5、6
Author Affiliations
  • 1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China
  • 2School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
  • 3State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 4Laboratory of Solid Quantum Material Center, College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
  • 5Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 6Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • show less
    DOI: 10.1088/1674-4926/40/7/071902 Cite this Article
    Xiaowu He, Yifeng Song, Ying Yu, Ben Ma, Zesheng Chen, Xiangjun Shang, Haiqiao Ni, Baoquan Sun, Xiuming Dou, Hao Chen, Hongyue Hao, Tongtong Qi, Shushan Huang, Hanqing Liu, Xiangbin Su, Xinliang Su, Yujun Shi, Zhichuan Niu. Quantum light source devices of In(Ga)As semiconductorself-assembled quantum dots[J]. Journal of Semiconductors, 2019, 40(7): 071902 Copy Citation Text show less
    (Color online) Single photons emitted from quantum 2-level transition and HBT coincidence counting test.
    Fig. 1. (Color online) Single photons emitted from quantum 2-level transition and HBT coincidence counting test.
    (Color online) Schematic diagram of (a) inward total reflective angle and (b) the interaction between atom and microcavity[75].
    Fig. 2. (Color online) Schematic diagram of (a) inward total reflective angle and (b) the interaction between atom and microcavity[75].
    (Color online) Strain-coupled InAs/GaAs single QDs emit at 1.3 μm[56, 76].
    Fig. 3. (Color online) Strain-coupled InAs/GaAs single QDs emit at 1.3 μm[56, 76].
    (Color online) Forward and reversed tapered micropillars with smooth facet[56].
    Fig. 4. (Color online) Forward and reversed tapered micropillars with smooth facet[56].
    (Color online) Test of 1.3 μm micropillar coupled QD SPSs[56].
    Fig. 5. (Color online) Test of 1.3 μm micropillar coupled QD SPSs[56].
    (Color online) InAs (a), GaAs (b) QDs on droplet self-catalyzed NWs and their exciton emission[39, 59].
    Fig. 6. (Color online) InAs (a), GaAs (b) QDs on droplet self-catalyzed NWs and their exciton emission[39, 59].
    (Color online) Direct fiber extracted AlGaAs/GaAs QD SPSs[60].
    Fig. 7. (Color online) Direct fiber extracted AlGaAs/GaAs QD SPSs[60].
    (Color online) Direct fiber extracted InAs/GaAs QD SPSs[57].
    Fig. 8. (Color online) Direct fiber extracted InAs/GaAs QD SPSs[57].
    (Color online) QD RF and single-photon quantum memory.
    Fig. 9. (Color online) QD RF and single-photon quantum memory.
    Material systemTmax (K) λ(nm) CommentRef.
    IInGaAs/InAs/GaAs90~1300~1.1–8.6Biexponential decay[68, 69]
    InAs/GaAs50~850–1000~1[70]
    IIInAs/InP50–70~1550~1–2[71, 72]
    InP/InGaP50~650–750~1[7376]
    InP/AlGaInP80~650–750~0.5–1[70]
    IIIInGaN/GaN150~430~8–60[69–79]
    GaN/AlN~0.1–1000~250–500200Lifetime increases with wavelength[80–82]
    Table 1. Comparison of different III-V epitaxially grown QD material systems and their properties[67].
    Xiaowu He, Yifeng Song, Ying Yu, Ben Ma, Zesheng Chen, Xiangjun Shang, Haiqiao Ni, Baoquan Sun, Xiuming Dou, Hao Chen, Hongyue Hao, Tongtong Qi, Shushan Huang, Hanqing Liu, Xiangbin Su, Xinliang Su, Yujun Shi, Zhichuan Niu. Quantum light source devices of In(Ga)As semiconductorself-assembled quantum dots[J]. Journal of Semiconductors, 2019, 40(7): 071902
    Download Citation