• Photonics Research
  • Vol. 9, Issue 7, 1264 (2021)
C. J. Zhu1、2、3, K. Hou1、4, Y. P. Yang1、6、*, and L. Deng5、7、*
Author Affiliations
  • 1MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2School of Physical Science and Technology, Soochow University, Suzhou 215006, China
  • 3Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • 4Department of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
  • 5Center for Optics Research and Engineering (CORE), Shandong University, Qingdao 266237, China
  • 6e-mail: yang_yaping@tongji.edu.cn
  • 7e-mail: lu.deng@email.sdu.edu.cn
  • show less
    DOI: 10.1364/PRJ.421234 Cite this Article Set citation alerts
    C. J. Zhu, K. Hou, Y. P. Yang, L. Deng. Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity QED system with dipole–dipole interaction[J]. Photonics Research, 2021, 9(7): 1264 Copy Citation Text show less
    References

    [1] M. Lucamarini, Z. L. Yuan, J. F. Dynes, A. J. Shields. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557, 400-403(2018).

    [2] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [3] J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, H. Weinfurter. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett., 96, 030404(2006).

    [4] J. L. O’brien. Optical quantum computing. Science, 318, 1567-1570(2007).

    [5] M. Xiao, L.-A. Wu, H. J. Kimble. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett., 59, 278-281(1987).

    [6] I. Kruse, K. Lange, J. Peise, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, C. Lisdat, L. Santos, A. Smerzi, C. Klempt. Improvement of an atomic clock using squeezed vacuum. Phys. Rev. Lett., 117, 143004(2016).

    [7] C. Lei, A. Weinstein, J. Suh, E. Wollman, A. Kronwald, F. Marquardt, A. Clerk, K. Schwab. Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit. Phys. Rev. Lett., 117, 100801(2016).

    [8] M. O. Scully, M. S. Zubairy. Quantum Optics(1999).

    [9] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, H. J. Kimble. Photon blockade in an optical cavity with one trapped atom. Nature, 436, 87-90(2005).

    [10] A. Kuhn, M. Hennrich, G. Rempe. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett., 89, 067901(2002).

    [11] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vučković. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys., 4, 859-863(2008).

    [12] A. Ridolfo, M. Leib, S. Savasta, M. J. Hartmann. Photon blockade in the ultrastrong coupling regime. Phys. Rev. Lett., 109, 193602(2012).

    [13] K. Müller, A. Rundquist, K. A. Fischer, T. Sarmiento, K. G. Lagoudakis, Y. A. Kelaita, C. Sánchez Muñoz, E. del Valle, F. P. Laussy, J. Vučković. Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett., 114, 233601(2015).

    [14] R. Sáez-Blázquez, J. Feist, F. J. Garca-Vidal, A. I. Fernández-Domnguez. Photon statistics in collective strong coupling: nanocavities and microcavities. Phys. Rev. A, 98, 013839(2018).

    [15] C. Hamsen, K. N. Tolazzi, T. Wilk, G. Rempe. Two-photon blockade in an atom-driven cavity QED system. Phys. Rev. Lett., 118, 133604(2017).

    [16] C. J. Zhu, Y. P. Yang, G. S. Agarwal. Collective multiphoton blockade in cavity quantum electrodynamics. Phys. Rev. A, 95, 063842(2017).

    [17] J. Z. Lin, K. Hou, C. J. Zhu, Y. P. Yang. Manipulation and improvement of multiphoton blockade in a cavity-QED system with two cascade three-level atoms. Phys. Rev. A, 99, 053850(2019).

    [18] P. Rabl. Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 107, 063601(2011).

    [19] J.-Q. Liao, F. Nori. Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A, 88, 023853(2013).

    [20] H. Xie, C.-G. Liao, X. Shang, M.-Y. Ye, X.-M. Lin. Phonon blockade in a quadratically coupled optomechanical system. Phys. Rev. A, 96, 013861(2017).

    [21] A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, A. A. Houck. Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett., 107, 053602(2011).

    [22] C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, A. Wallraff. Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett., 106, 243601(2011).

    [23] Y.-X. Liu, X.-W. Xu, A. Miranowicz, F. Nori. From blockade to transparency: controllable photon transmission through a circuit-QED system. Phys. Rev. A, 89, 043818(2014).

    [24] A. Miranowicz, M. Paprzycka, Y.-X. Liu, J. C. V. Bajer, F. Nori. Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A, 87, 023809(2013).

    [25] G. Hovsepyan, A. Shahinyan, G. Y. Kryuchkyan. Multiphoton blockades in pulsed regimes beyond stationary limits. Phys. Rev. A, 90, 013839(2014).

    [26] R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, H. Jing. Nonreciprocal photon blockade. Phys. Rev. Lett., 121, 153601(2018).

    [27] T. Liew, V. Savona. Single photons from coupled quantum modes. Phys. Rev. Lett., 104, 183601(2010).

    [28] H. Flayac, V. Savona. Unconventional photon blockade. Phys. Rev. A, 96, 053810(2017).

    [29] H. Snijders, J. Frey, J. Norman, M. Bakker, E. Langman, A. Gossard, J. Bowers, M. Van Exter, D. Bouwmeester, W. Löffler. Purification of a single-photon nonlinearity. Nat. Commun., 7, 12578(2016).

    [30] J. Tang, W. Geng, X. Xu. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system. Sci. Rep., 5, 9252(2015).

    [31] S. Ferretti, V. Savona, D. Gerace. Optimal antibunching in passive photonic devices based on coupled nonlinear resonators. New J. Phys., 15, 025012(2013).

    [32] H. Z. Shen, Y. H. Zhou, X. X. Yi. Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A, 91, 063808(2015).

    [33] B. Sarma, A. K. Sarma. Quantum-interference-assisted photon blockade in a cavity via parametric interactions. Phys. Rev. A, 96, 053827(2017).

    [34] H. Wang, X. Gu, Y.-X. Liu, A. Miranowicz, F. Nori. Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A, 92, 033806(2015).

    [35] B. Li, R. Huang, X. Xu, A. Miranowicz, H. Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 7, 630-641(2019).

    [36] X.-W. Xu, A.-X. Chen, Y.-X. Liu. Phonon blockade in a nanomechanical resonator resonantly coupled to a qubit. Phys. Rev. A, 94, 063853(2016).

    [37] H. Shen, C. Shang, Y. Zhou, X. Yi. Unconventional single-photon blockade in non-Markovian systems. Phys. Rev. A, 98, 023856(2018).

    [38] M. Radulaski, K. A. Fischer, K. G. Lagoudakis, J. L. Zhang, J. Vučković. Photon blockade in two-emitter-cavity systems. Phys. Rev. A, 96, 011801(2017).

    [39] M. Bamba, A. Imamoğlu, I. Carusotto, C. Ciuti. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A, 83, 021802(2011).

    [40] A. Majumdar, M. Bajcsy, A. Rundquist, J. Vučković. Loss-enabled sub-Poissonian light generation in a bimodal nanocavity. Phys. Rev. Lett., 108, 183601(2012).

    [41] X. Liang, Z. Duan, Q. Guo, C. Liu, S. Guan, Y. Ren. Antibunching effect of photons in a two-level emitter-cavity system. Phys. Rev. A, 100, 063834(2019).

    [42] K. Hou, C. Zhu, Y. Yang, G. Agarwal. Interfering pathways for photon blockade in cavity QED with one and two qubits. Phys. Rev. A, 100, 063817(2019).

    [43] C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, J. Estève. Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett., 121, 043602(2018).

    [44] H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, W. Löffler. Observation of the unconventional photon blockade. Phys. Rev. Lett., 121, 043601(2018).

    [45] 45When a four-level atom with two closely spaced middle states is excited by four photons via different middle state (all one-photon excitation) such a system is often referred to as a diamond scheme four-wave mixing. For instance, the excitation of the D-state of an alkali atom simultaneously via S-P1/2-D and S-P3/2-D paths. If only three photons are provided this is the usual 2n-1 excitation scheme in four-wave mixing; see also Ref. [46].

    [46] L. Deng, M. Payne, W. Garrett. Effects of multi-photon interferences from internally generated fields in strongly resonant systems. Phys. Rep., 429, 123-242(2006).

    [47] G. S. Agarwal. Quantum Optics(2013).

    [48] S. de Léséleuc, D. Barredo, V. Lienhard, A. Browaeys, T. Lahaye. Optical control of the resonant dipole-dipole interaction between Rydberg atoms. Phys. Rev. Lett., 119, 053202(2017).

    [49] D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, C. S. Adams. Coherent excitation transfer in a spin chain of three Rydberg atoms. Phys. Rev. Lett., 114, 113002(2015).

    [50] K. Almutairi, R. Tanaś, Z. Ficek. Generating two-photon entangled states in a driven two-atom system. Phys. Rev. A, 84, 013831(2011).

    [51] P. Lodahl, S. Mahmoodian, S. Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys., 87, 347-400(2015).

    [52] H. Kim, D. Sridharan, T. C. Shen, G. S. Solomon, E. Waks. Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning. Opt. Express, 19, 2589-2598(2011).

    [53] J.-H. Kim, S. Aghaeimeibodi, C. J. Richardson, R. P. Leavitt, E. Waks. Super-radiant emission from quantum dots in a nanophotonic waveguide. Nano Lett., 18, 4734-4740(2018).

    [54] J. Majer, J. Chow, J. Gambetta, J. Koch, B. Johnson, J. Schreier, L. Frunzio, D. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf. Coupling superconducting qubits via a cavity bus. Nature, 449, 443-447(2007).

    [55] A. Grimm, F. Blanchet, R. Albert, J. Leppäkangas, S. Jebari, D. Hazra, F. Gustavo, J.-L. Thomassin, E. Dupont-Ferrier, F. Portier, M. Hofheinz. Bright on-demand source of antibunched microwave photons based on inelastic cooper pair tunneling. Phys. Rev. X, 9, 021016(2019).

    [56] G. Sadiek, W. Al-Drees, M. S. Abdallah. Manipulating entanglement sudden death in two coupled two-level atoms interacting off-resonance with a radiation field: an exact treatment. Opt. Express, 27, 33799-33825(2019).

    [57] O. Bitton, S. N. Gupta, G. Haran. Quantum dot plasmonics: from weak to strong coupling. Nanophotonics, 8, 559-575(2019).

    [58] A. Browaeys, D. Barredo, T. Lahaye. Experimental investigations of dipole–dipole interactions between a few Rydberg atoms. J. Phys. B, 49, 152001(2016).

    [59] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. Yavuz, T. Walker, M. Saffman. Observation of Rydberg blockade between two atoms. Nat. Phys., 5, 110-114(2009).

    [60] T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. Yavuz, T. Walker, M. Saffman. Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions. Phys. Rev. Lett., 100, 113003(2008).

    [61] R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, D. Meschede. Cavity-modified collective Rayleigh scattering of two atoms. Phys. Rev. Lett., 114, 023601(2015).

    [62] M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. Wasilewski, O. Stern, A. Forchel. Coupling and entangling of quantum states in quantum dot molecules. Science, 291, 451-453(2001).

    [63] J. D. Cox, M. R. Singh, G. Gumbs, M. A. Anton, F. Carreno. Dipole-dipole interaction between a quantum dot and a graphene nanodisk. Phys. Rev. B, 86, 125452(2012).

    [64] M. Saffman, T. Walker. Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A, 72, 022347(2005).

    [65] B. T. Gard, K. Jacobs, R. McDermott, M. Saffman. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator. Phys. Rev. A, 96, 013833(2017).

    [66] F. Quijandra, U. Naether, S. K. Özdemir, F. Nori, D. Zueco. Pt-symmetric circuit QED. Phys. Rev. A, 97, 053846(2018).

    C. J. Zhu, K. Hou, Y. P. Yang, L. Deng. Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity QED system with dipole–dipole interaction[J]. Photonics Research, 2021, 9(7): 1264
    Download Citation