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We theoretically study a quantum destructive interference (QDI)-induced photon blockade in a two-qubit driven
cavity quantum electrodynamics system with dipole–dipole interaction (DDI). In the absence of dipole–dipole
interaction, we show that a QDI-induced photon blockade can be achieved only when the qubit resonance fre-
quency is different from the cavity mode frequency. When DDI is introduced the condition for this photon
blockade is strongly dependent upon the pump field frequency, and yet is insensitive to the qubit–cavity coupling
strength. Using this tunability feature we show that the conventional energy-level-anharmonicity-induced photon
blockade and this DDI-based QDI-induced photon blockade can be combined together, resulting in a hybrid
system with substantially improved mean photon number and second-order correlation function. Our proposal
provides a nonconventional and experimentally feasible platform for generating single photons. © 2021 Chinese

Laser Press

https://doi.org/10.1364/PRJ.421234

1. INTRODUCTION

Nonclassical states of light have properties that challenge the
usual notions of classical physics. These states not only show
fundamental differences between quantum and classical
physics, but also allow scientists to test the validity of quantum
mechanics experimentally. Besides fundamental physics consid-
erations, nonclassical states of light play an essential role in
quantum information protocols such as quantum key distribu-
tions [1], quantum cryptography [2], quantum entanglement
[3], and optical quantum computing [4]. Moreover, certain
types of nonclassical states have reduced fluctuations compared
to classical states, which may lead to improvements in the field
of precision measurements [5–7].

Photon blockade (PB) is an important technique for generat-
ing nonclassical light. So far, two physical schemes have been used
to achieve a strong PB effect. The conventional photon blockade
(CPB) scheme is based on the well-known eigenenergy-level an-
harmonicity (ELA) in cavity quantum electrodynamics (QED)
[2,8]. When a photon is tuned to resonantly excite the atom–
cavity QED system from its ground state to the states of the
lowest doublet, the absorption of a second photon at the same

frequency is blockaded because transitions to higher doublets
are significantly off-resonance because of ELA [9]. Consequently,
antibunching photons with sub-Poissonian statistical characteris-
tics can be generated. In the strong coupling regime, where the
coupling between the quantum emitter and the cavity is larger
than the cavity decay rate, this ELA-based CPB has been exper-
imentally and theoretically studied in various quantum systems
[9–14], including atom–cavity QED [15–17], optomechanical
systems [18–20], circuit QED systems [21–23], Kerr-nonlinearity
systems [24–26], and so on.

An unconventional photon blockade (UCPB) relies on the
quantum destructive interference (QDI) between two different
quantum transition pathways from the ground state to a two-
photon excited state. Liew and Savona first proposed the con-
cept of QDI-based UCPB [27,28] via weak nonlinearities,
opening more degrees of freedom for operation. Although both
CPB and UCPB result in strong antibunched photons, the
underlying physical mechanisms are completely different.
The reduction of the two-photon state is achieved by a destruc-
tive interference in UCPB rather than the nonlinearity of the
dressed spectrum in the strong coupling regime. Since strong
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coupling condition is not required for achieving QDI-based
UCPB [29], this scheme has received great attention and it
has been proposed for many quantum systems including quan-
tum dots [30], third-order nonlinearity scheme [31,32], optical
parametric amplifier scheme [33], optomechanical device
[34–36], non-Markovian system [37], two-emitter-cavity [38],
and Jaynes–Cummings model [39–42]. Recently, the QDI-
induced PB has been demonstrated in superconducting
QED systems [43,44]. It must be noted that single-atom
UCPB effect can only be achieved in a cavity-driven system,
not an atom-driven system [42].

In this work, we propose a two-qubit (e.g., two-level atoms)
single-cavity system to study a hybrid PB effect in which an
ELA-based mechanism and a QDI-based mechanism act co-
operatively. The central enabler of this atom-driven hybrid
PB is the inter-atom (“super-qubit”) dipole–dipole interaction
(DDI). In this configuration a two-qubit system is coherently
“locked” by a cavity mode, effectively making it a super-qubit
system with two “internal” excitation pathways. Here, each
pathway involves one qubit in a coherently locked and driven
two-qubit-one-cavity system. This new scheme mimics the
four-level diamond excitation scheme in nonlinear optics [45]
where robust QDI effect can play a dominant role [46] and we
shall refer it as a diamond PB (DPB). We find that the exci-
tation pathways via two individual but locked qubits are indis-
tinct when the qubit resonance frequency is the same as
that of the cavity mode, yielding a constructive interference.
However, when the qubit resonance frequency is shifted from
the cavity mode frequency, the two excitation pathways become
distinct, yielding a destructive interference. Unlike UPBs where
the field–cavity coupling strength is essential in the destructive
interference formed by different excitation pathways in the
same single qubit, the DPB scheme described here is indepen-
dent of coupling strength. This implies that in the presence of
DDI both the ELA and QDI can induce PB operations at the
same probe field coupling strength. This opens the possibility
for an extremely strong PB effect that yields a well-detectable
mean photon number, the virtual of an ELA-PB, and yet an
extremely small g �2��0�, which is the pinnacle of a QDI-PB.

2. MODEL SYSTEM

We consider two identical two-level qubits (two-level atom)
with resonant frequency ωa located in a single-mode cavity hav-
ing resonant frequency ωc. The ground (excited) atomic state is
labeled as jgi (jei) and the positions of two qubits are given by
xj �j � 1,2� (Fig. 1). The two qubits are coherently driven by a
pump field with angular frequency ωp and Rabi frequency Ωp.
TheDDIwith strength J plays a key role to the statistical proper-
ties of the cavity field when d � jx1 − x2j < λa ≡ 2πc∕ωa.
Assuming that these two qubits have the same qubit–cavity cou-
pling strength g and using rotating wave approximation, the
Hamiltonian in the presence of DDI can be expressed as

H �
X2
j�1

−Δaσ
†
j σj − Δca†a�

X2
j�1

g�a†σj � aσ†j �

�J�σ1σ†2 � σ2σ
†
1� �

X2
j�1

Ωp�σj � σ†j �, (1)

whereΔc � ωp − ωc andΔa � ωp − ωa are the cavity and qubit
frequency detunings, respectively. Here, a �a†� is the cavity field
annihilation (creation) operator, and σj � jgijhej is the lowering
operator of the jth qubit.

The dynamics of this two-qubit coherently driven system is
described by the master equation [47]:

∂ρ
∂t

� −i�H , ρ� � Lκ �ρ� � Lγ �ρ� � Lγ 0 �ρ�, (2)

where ρ is the system density matrix, Lκ�ρ� � 0.5 κ�2aρa†−
a†aρ − ρa†a� describes the cavity leakage with rate κ, and
Lγ �ρ� �

P
2
j�1 0.5 γ�2σjρσ†j − σ†j σjρ − ρσ†j σj� indicates free-

space damping of the jth qubit with rate γ. The last term
Lγ 0 �ρ� � 0.5 γ 0

P
i≠j�2σiρσ†j − σ†i σjρ − ρσ†i σj� describes the

collective damping resulting from the mutual exchange of
spontaneously emitted photons through a common reservoir.
Under the condition of J ≫ γ 0, the last term in Eq. (2) can
be safely neglected as treated in Rydberg atoms [48–50].

3. ELA AND QDI-INDUCED PBS IN THE
ABSENCE OF DDI

We first consider the case where the DDI is absent, i.e., two
qubits are well separated with kad ≫ 1 (ka � 2π∕λa). In this
case, using collective states, i.e., jgg , ni, j � , ni ≡ �jeg , ni �
jge, ni�∕ ffiffiffi

2
p

, and jee, ni, one can rewrite the Hamiltonian
[Eq. (1)] to give H�ΔaS†S�Δca†a�2g�aS†�a†S� �
Ωp�S�S†� with collective operator S � �σ1 � σ2�∕

ffiffiffi
2

p
. In

the strong coupling regime, it is convenient to describe the
system by using the dressed state representation [see Fig. 2(a)
and Appendix A.1]. In n-photon space the eigenstates form
ladder-type doublets with unevenly separated energy levels.
When the pump field was tuned to one of the states of the
lowest doublet, i.e., Ψ���

1 with the condition of 2g2 � ΔaΔc,
the absorption of a second photon of the pump field will
be blocked due to the large energy mismatch resulting from
energy-level anharmonicity.

To show this feature, we calculate the second-order correla-
tion function g �2��0� � ha†a†aai∕�ha†ai�2 by numerically solv-
ing the master equation. With system parameters Δc � −30κ,
g � 5κ, γ � κ, and Ωp � 0.1κ, Fig. 2(c) shows two PBs

Fig. 1. Sketch of the two-qubit cavity QED system with different
cavity mode frequency ωc and qubit resonant frequency ωa. A pump
field Ωp couples the qubit ground state jgi and excited state jei with
the angular frequency ωp. γ and κ denote the qubit decay rate and the
cavity decay rate, respectively. Here, DDI represents the dipole–dipole
interaction when two qubits are close enough.
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originated from different mechanisms. The blue dashed–dotted
line indicates the detuning Δa ≈ −1.6κ for realizing an ELA-
induced PB operation as discussed above, whereas the red
dashed–dotted line shows the location of the QDI-induced
PB operation. The latter exhibits near 2 orders of magnitude
smaller g �2��0�, a virtue of the QDI-based PB operation.
However, the mean photon number only peaks at the location
of ELA-based PB operation. The 3-order of magnitude differ-
ence in mean photon number demonstrates the significant ex-
perimental detection advantage of the ELA scheme over the
QDI scheme.

The physical mechanism of the QDI-based PB can be ex-
plained by using the collective state picture. Figure 2(b) exhib-
its two pathways for two-photon excitation of the state j�; 1i
after direct one-photon excitation of the state j�; 0i. One path
is indicated by straight and curved yellow arrows representing

j�; 0i!
ffiffi
2

p
gjgg; 1i !

ffiffi
2

p
Ωpj�; 1i and the other path is indicated by

straight and curved green arrows representing

j�; 0i !
ffiffi
2

p
Ωpjee; 0i!

ffiffi
2

p
gj�; 1i. When Δa � Δc , these two excita-

tion pathways are indistinguishable so that the two-photon ex-
citation can be enhanced due to the constructive interference.
However, when Δa ≠ Δc , these two excitation pathways are
distinct and can lead to a destructive interference that blocks
two-photon excitation of state j�; 1i. This is the essence of the
QDI-induced PB effect. Using the amplitude equations, one
can show that the condition for achieving this QDI-induced
PB is Δc � −2Δa, which is independent of the coupling
strength. This important feature implies that it is possible to
shift and overlap, using a third cooperative interaction element,
the peak QDI-PB operation regime to the optimum ELA-PB
operation regime, creating a novel PB operation with large
mean photon number and yet extremely small g �2��0� [see dis-
cussion below and Appendix A.2 and A.3].

We note that such a quantum interference by excitation path-
ways does not exist in a single-qubit atom-driven QED system
[42]. In the single-qubit case, the two-photon state jg; 2i can

only be excited via a single pathway, i.e., jg; 0i!
Ωp je; 0i!g

jg; 1i!
Ωp je; 1i!g jg; 2i. This is the reason why without the assis-

tance of extra nonlinearity single-atom QDI-based UCPB can
only be realized in a cavity-driven system. We also note that
the QDI-induced PB in the two-qubit QED system described
in this work is different from those reported in the literature
[28,43,44]. Most noticeably, the condition for realizing the
QDI-induced DPB studied here is insensitive to the coupling
strength and this indicates that the scheme is more robust and
immune to field-related fluctuations in applications.

4. DIPOLE–DIPOLE INTERACTION INDUCED
STRONG PB EFFECT

Figure 2(c) shows that the optimum operation regimes of the
ELA scheme and the QDI scheme occur at different PB opera-
tional frequencies. We naturally ask if an additional interaction
control mechanism can enable optimum performance of both
regimes at a single PB operation frequency so that the advan-
tages of both schemes can be realized simultaneously. As
we show below, the DDI between two atoms can indeed
achieve this goal, resulting in a hybrid PB that preserves the
virtue of large mean photon number as well as the extremely
small g �2��0�.

In the presence of DDI, the state j�, ni is shifted by
an amount of J which characterizes the DDI strength.
Consequently, the condition for achieving ELA-induced PB be-
comes 2g2 � Δc�Δa − J�. It can be shown that the condition
for realizing the QDI-induced PB remains unchanged. This is
because for the QDI-induced PB both j�; 0i and j�; 1i states
are shifted by the same amount of J in the same direction. It is
this differential change that provides a tunability that enables
the overlap of operational frequencies of both schemes.
This desired operation regime can be achieved by making
Δc � −2Δa (green dashed line), resulting in a very strong
PB phenomenon, as shown in Figs. 3(a) and 3(b). Here, an
order of magnitude mean photon number increase and more
than 4 orders of magnitude reduction of g �2��0� are achieved
simultaneously at the same PB operational frequency of
Δa∕κ � 15 with the DDI strength J � Δa � g2∕Δa ≈ 3.5g

(a) (b) (c)

Fig. 2. (a), (b) The anharmonic ladder-type energy structure and the destructive interference pathways for the ELA-based and QDI-induced PBs,
respectively. In (a), the absorption of a second photon of the pump field will be blocked due to the large energy mismatch if the pump field is tuned to
the state Ψ���

1 as denoted by the blue and red arrows, respectively. In (b), two interference pathways from state j�; 0i to state j�; 1i are indicated by
the yellow and green arrows, respectively. (c) The equal-time second-order correlation function g�2��0� (solid curve) and mean photon number ha†ai
(dashed curve) as a function of the normalized detuning Δa∕κ. Here, we chose J � 0, Δc � −30κ, g � 5κ, γ � κ, and Ωp � 0.1κ.
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[black solid [in Fig. 3(a)] and dashed [in Fig. 3(b)] curves cor-
respond to those shown in Fig. 2(c)].

Based on the relation g2 � −Δa�Δa − J�, one can easily find
the condition J ≥ 2g for obtaining the frequency to achieve
this hybrid PB operation. In Fig. 4, we plot the second-order
correlation function log10�g �2��0�� [panel (a)] and the mean
photon number log10�ha†ai� [panel (b)] as functions of the
DDI strength J∕g and detuning Δa∕κ by setting Δc � −2Δa
(other system parameters are the same as those used in Fig. 3).
The condition for frequency-matched operation g2 �
−Δa�Δa − J� is indicated by the dashed curves. Clearly, J ≥ 2g
is a threshold for a PB operation with minimum g �2��0�.

Taking J � 2g we show the influence of qubit–cavity cou-
pling strength on the PB operation in Figs. 5(a) and 5(b). These
are contour plots of log10�g �2��0�� and log10�ha†ai� as functions
of the normalized detuning Δa∕κ and atom–cavity coupling
strength g∕κ by taking Δc � −2Δa. The white dashed lines de-
note the optimal condition of PB operation, i.e., g � Δa. With
this optimal condition, the g�2��0� of the PB can be improved
by increasing the atom–cavity coupling strength [see Fig. 5(a)].
In Fig. 5(b) the mean photon number is always at its maximum
but the parameter space for reaching this optimal number in-
creases. It is worthy to point out that this scheme has a broad
range of parameters to realize vanishingly small second-order
correlation function, i.e., g �2��0� < 0.01. The minimum re-
quirement for the qubit–cavity coupling strength is g > κ,

indicated by the cross point of the black solid curve and white
dashed line in Fig. 5.

Besides coupling strength, the atom driving field Rabi fre-
quency and atomic decay rate also affect the PB effect. As
shown in Fig. 6(a), although g �2��0� increases as the driving
field Rabi frequency Ωp increases, strong PB phenomenon
(defined as g �2� < 0.01) still can be achieved with the DPB
scheme. Moreover, the weaker the atomic spontaneous decay
rate, the stronger the PB effect becomes. In Fig. 6(b), we show
the quantum statistic properties of the cavity field by calculating
the relative deviations of the cavity photon distribution P�n�
from the Poisson distribution P�n� ≡ hnine−hni∕n! with the
same mean photon number hni � ha†ai, i.e., �P�n�−
P�n��∕P�n�. It is clear that the probability for detecting a single
photon, i.e., P�1� is greatly enhanced as the qubit decay rate
decreases, but the probabilities for detecting n ≥ 2 photons
are strongly suppressed.

5. EXPERIMENTAL CONSIDERATIONS

The proposed two-qubit hybrid PB/DPB model may be real-
ized by placing two quantum dots in an optical cavity/wave-
guide [51–53] or a superconductive microwave resonator
with two Rydberg atoms [43,54–56]. With current experimen-
tal technology [57], the minimal condition of J > 2g > 4κ can
be satisfied if the distance between two quantum dots is much

(a) (b)

Fig. 3. Logarithmic plots of (a) the second-order correlation func-
tion g �2��0� and (b) the mean photon number ha†ai as functions of the
normalized detuning Δa∕κ with the DDI strength J � 0 (black
curves), g (blue curves), and 3.5g (red curves), respectively. The green
dashed line indicates the condition Δc � −2Δa. Other system param-
eters are the same as those used in Fig. 2(c).

(a) (b)

Fig. 4. Logarithmic plots of (a) the second-order correlation func-
tion g �2��0� and (b) the mean photon number ha†ai as functions of the
DDI strength J∕g and detuning Δa∕κ by setting Δc � −2Δa and
g � 5κ. Other system parameters are the same as those used in Fig. 3.
The dashed curves denote the optimal condition g2 � −Δa�Δa − J�.

(a) (b)

Fig. 5. Logarithmic plots of (a) the second-order correlation func-
tion g�2��0� and (b) the mean photon number ha†ai against the de-
tuning Δa∕κ and coupling strength g∕κ with Δc � −2Δa and J � 2g .
The white dashed line corresponds to the condition g � Δa, while the
black solid curves denote g �2��0� � 0.01.

(a) (b)

Fig. 6. (a) The second-order correlation function log10�g�2��0�� ver-
sus the normalized pump field Rabi frequency Ωp∕κ with spontaneous
decay rate γ∕2π � 0.1κ (red solid curves), 0.5κ (black dashed curves),
and κ (blue dotted curves), respectively. (b) The plot of the photon
number in Fock states with Ωp � 0.2κ. Here, the system parameters
are given by g � 2κ, and J � Δc � −2Δa � 2g .
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smaller than the wavelength. For the latter case, large DDI can
be realized using trapped cold Rydberg atoms [56,58–60].
Here, 87Rb atoms from a cold atom cloud trapped in a back-
ground magneto-optical trap can be employed to load an op-
tical cavity. For a cloud that has a density of 1017 m−3 two
optical tweezers operating at 900 nm wavelength can be in-
jected into the atom cloud laterally in a single-pass configura-
tion. Using optics with a numerical aperture of ∼0.5, a tight

focus of a few micrometers in diameter can be achieved and the
trap centers can be controlled to have a separation of 10 μm by
slight tilting the focusing optics [58,61]. The excitation to
Rydberg state of n � 60–90 can be achieved using a combina-
tion of red and blue lasers via a two-photon step-up process.
The cavity has a length of a few centimeters with a confocal
parameter of the order of 10 μm, ensuring equal Rydberg atom
excitation in the two near-by dipole traps. The advantage of the
microwave scheme is that atom–atom interaction is not based
on inter-atom DDI but on the common cavity mode. In es-
sence, the cavity plays a triple role of level asymmetry, quantum
interference, and atom–atom interaction whereas in the case of
optical cavity the cavity plays a dual role of level asymmetry and
quantum interference.

6. CONCLUSION

In summary, we have investigated a new photon blockade effect
using an atom–atom dipole–dipole interaction assisted joint
ELA- and QDI-scheme two-qubit QED system. In the absence
of DDI, we show that optimal QDI-induced photon blockade
can be realized only at qubit resonance frequency that is differ-
ent from the cavity mode frequency and the PB operation mean
photon number is low. We derived conditions for the ELA-
based CPB and QDI-based UCPB, revealing that the condition
for QDI-induced PB depends only on the pump field fre-
quency and the PB effect is insensitive to the qubit–cavity cou-
pling strength. This new joint ELA-QDI PB scheme with DDI
as a mediator forms a highly effective hybrid diamond PB that
exhibits a very strong PB effect, having more than an order of
magnitude improvement on mean photon numbers and yet re-
taining the extremely low second-order correlation function.
Our work provides a theoretical foundation for possible exper-
imental demonstration of this diamond-scheme PB for highly
efficient PB operation. The implementation of this protocol is
potentially demonstrable using quantum systems such as a
semiconductor quantum dot or quantum well cavity QED sys-
tem [62,63], Rydberg atom–cavity QED system [64,65], and
circuit cavity QED system [66]. It may lead to a new type of
hybrid single-photon source for quantum information process-
ing and communication.

APPENDIX A

1. Condition of ELA-Based PB without DDI
We first consider the case where the DDI is absent. Neglecting
the driving term (i.e., setting Ωp � 0), and using the collective
states as basis �jgg , ni, j�, n − 1i, j−, n − 1i, jee, n − 2i� with
j�i � �jegi � jgei�∕ ffiffiffi

2
p

, the Hamiltonian in the n-photon
space can be expressed in the following matrix form:

H �n� �

0
BBB@

nωc
ffiffiffiffiffi
2n

p
g 0 0ffiffiffiffiffi

2n
p

g ωa � �n − 1�ωc 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�n − 1�

p
g

0 0 ωa � �n − 1�ωc 0
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�n − 1�

p
g 0 2ωa � �n − 2�ωc

1
CCCA: (A1)

Specifically, in the one-photon space, the eigenvalues of the
Hamiltonian H �1� can be solved analytically, which reads

E �1�
1 � ωa, with Ψ�1�

1 � j−; 0i, (A2a)

E ���
1 �1

2

�
ωc�ωa�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2��ωa−ωc�2

q �
with

Ψ���
1 �N ���

1

�
−
ωa−ωc�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2��ωa−ωc�2

p
2g

jgg;1i�j�;0i
�
,

(A2b)

where N�
1 are the corresponding normalization constants. It

can be clearly seen that the product state j−; 0i is the dark state,
which does not couple other states of the system.

The condition of the ELA-based PB can be obtained by set-
ting ωp � E ���

1 or ωp � E �−�
1 . Thus, we can obtain

Δa � Δc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2 � �Δc − Δa�2

q
, (A3)

by taking ωp � E ���
1 , which can be further simplified as

g2 � 1

2
ΔcΔa: (A4)

Likewise, one can obtain the same condition for ωp � E �−�
1 .

2. Condition of QDI-Induced PB without DDI
In the weak driving case (i.e., Ωp ≪ κ), one can expand the
system wave function to two-photon manifold with ansatz

jΨi �
X2
n�0

Cgg ,njgg , ni

�
X2
n�1

C�,n−1j�, n − 1i � Cee,n−2jee, n − 2i, (A5)

where jCα1α2, nj2 represent the probabilities of occupation in
state jα1α2, ni �fα1, α2g � fg , eg, n � 0−2�. Using the
Schrödinger equation, the dynamical equations for the ampli-
tudes Cα1α2, n are given by
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i
∂
∂t
Cgg;1 �

�
−Δc −

iκ
2

�
Cgg;1 �

ffiffiffi
2

p
gC�;0 �

ffiffiffi
2

p
ΩpC�;1,

(A6a)

i
∂
∂t
Cgg;2 � 2gC�;1 � �−2Δc − iκ�Cgg;2, (A6b)

i
∂
∂t
C�;0 �

�
−Δa −

iγ
2

�
C�;0 �

ffiffiffi
2

p
ΩpCgg;0 �

ffiffiffi
2

p
gCgg;1

�
ffiffiffi
2

p
ΩpCee;0, (A6c)

i
∂
∂t
C�;1 �

�
−Δa − Δc −

iγ
2
−
iκ
2

�
C�;1 �

ffiffiffi
2

p
ΩpCgg;1

� 2gCgg;2 �
ffiffiffi
2

p
gCee;0, (A6d)

i
∂
∂t
Cee;0 � �−2Δa − iγ�Cee;0 �

ffiffiffi
2

p
ΩpC�;0 �

ffiffiffi
2

p
gC�;1:

(A6e)

Under the weak driving assumption, i.e., Cgg;0≃
1 ≫ Cgg;1,C�;0 ≫ Cgg;2,C�;1,Cee;0, one can easily obtain
the steady-state solutions of the above equations, which yields

Cgg;2 ≈ −
32

ffiffiffi
2

p
ig2Ω2

p�2Δa � Δc�
F

, (A7)

by assuming fΔa,Δcg ≫ fκ, γg, where F � �Δa�−4Δc − 2iκ�−
2iγΔc � γκ � 8g2� f−4Δ2

a�κ − 2iΔc� − 2iΔa �−4iΔc �γ � κ�−
4Δ2

c � 2γκ � 8g2 � κ2 � � γ2κ − 4γΔ2
c − 2iΔc �γ2 � 2γκ�

4g2� � γκ2 � 8γg2 � 4g2κg.
Then, the realization of g �2��0� ≈ 2jCgg;2j2∕jCgg;1j4 → 0

requires Cgg;2 � 0, and one can easily obtain the condition
of QDI-induced PB, i.e.,

Δc � −2Δa: (A8)

In Fig. 7, we plot the equal-time second-order correlation
function g �2��0� [panel (a)] and mean photon number ha†ai
[panel (b)] as functions of the atomic detuning Δc∕κ and
the cavity detuning Δa∕κ, respectively. Here, the dashed–
dotted curves denote the condition of the ELA-based PB, and
the dashed curves denote the condition of the QDI-induced
PB. The system parameters are chosen as Ωp � 0.1κ, g � 5κ,
and γ � κ. It is clear to see that the numerical results match
the analytical solutions very well. Here, the dashed–dotted
curves represent the condition of the ELA-based PB
[i.e., Eq. (A4)], while the dashed line represents the condition

of the QDI-induced PB [i.e., Eq. (A8)]. As shown in Fig. 7,
although the value of g �2��0� for the QDI-induced PB is much
smaller than that for the ELA-based PB, the mean photon
number is too small to be detected.

3. Condition of ELA-Based PB with DDI
In the presence of DDI, likewise, the Hamiltonian in n-photon
space can be expressed as

H �n� �

0
BBB@

nωc
ffiffiffiffiffi
2n

p
g 0 0ffiffiffiffiffi

2n
p

g ωe � �n − 1�ωc � J 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�n − 1�

p
g

0 0 ωe � �n − 1�ωc − J 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�n − 1�

p
g 0 2ωe � �n − 2�ωc

1
CCCA: (A9)

Diagonalizing the above matrix, the eigenvalues and eigen-
states in the one-photon space are given by

E �1�
1 � −J � ωa, with Ψ�1�

1 � j−; 0i, (A10a)

(a) (b)

Fig. 7. Logarithmic plot of (a) the equal-time second-order corre-
lation function g�2��0� and (b) the mean photon number ha†ai as
functions of the normalized atomic detuning Δc∕κ and the cavity de-
tuningΔa∕κ. The white dashed–dotted curves denote the condition of
the ELA-based PB [i.e., Eq. (6)], and the white dashed lines denote the
condition of the QDI-induced PB [i.e., Eq. (10)]. The system param-
eters are given by Ωp � 0.1κ, g � 5κ, and γ � κ.

(a) (b)

Fig. 8. Logarithmic plot of (a) the equal-time second-order corre-
lation function g�2��0� and (b) the mean photon number ha†ai as
functions of Δc∕κ and Δa∕κ with J � 2g . The white dashed–dotted
curves denote the condition of the ELA-based PB [i.e., Eq. (13)], and
the white dashed lines denote the condition of the QDI-induced PB
[i.e., Δc � −2Δa].
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q �
with

Ψ���
1 �N ���

1

�
−
J�ωac�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2��J�ωac�2

p
2g

jgg;1i�j�;0i
�
,

(A10b)

where ωac � ωa − ωc and N�
1 are the normalization constants.

It is noted that the product state j−, n − 1i is also decoupled to
other states of the system. The DDI only shifts the state
j�, n − 1i by the amount of �J, but does not affect other
states. Thus, the condition of the ELA-based PB can be ob-
tained by setting ωp � E�

1 or ωp � E−
1, which yields

g2 � 1

2
Δc�Δa − J�: (A11)

It is noted that the condition of this ELA-based PB strongly
depends on the DDI strength J . Therefore, one can adjust the
DDI strength to coincide the conditions of the ELA-based and
the QDI-induced PBs [indicated by the red arrows in Fig. 2]
since the condition of the QDI-induced PB is insensitive to the
DDI. As shown in Fig. 8, strong PB with large mean photon
number can be achieved via the DDI.
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