• Photonics Research
  • Vol. 10, Issue 1, 14 (2022)
Fengya Lu1, Lei Gong1、2、4、*, Yan Kuai1, Xi Tang1, Yifeng Xiang3, Pei Wang1, and Douguo Zhang1、2、5、*
Author Affiliations
  • 1Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
  • 2Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
  • 3Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China
  • 4e-mail: leigong@ustc.edu.cn
  • 5e-mail: dgzhang@ustc.edu.cn
  • show less
    DOI: 10.1364/PRJ.439288 Cite this Article Set citation alerts
    Fengya Lu, Lei Gong, Yan Kuai, Xi Tang, Yifeng Xiang, Pei Wang, Douguo Zhang. Controllable optofluidic assembly of biological cells using an all-dielectric one-dimensional photonic crystal[J]. Photonics Research, 2022, 10(1): 14 Copy Citation Text show less
    References

    [1] P. Jing, Y. Liu, E. G. Keeler, N. M. Cruz, B. S. Freedman, L. Y. Lin. Optical tweezers system for live stem cell organization at the single-cell level. Biomed. Opt. Express, 9, 771-779(2018).

    [2] M. Waleed, S. U. Hwang, J. D. Kim, I. Shabbir, S. M. Shin, Y. G. Lee. Single-cell optoporation and transfection using femtosecond laser and optical tweezers. Biomed. Opt. Express, 4, 1533-1547(2013).

    [3] K. Berghoff, W. Gross, M. Eisentraut, H. Kress. Using blinking optical tweezers to study cell rheology during initial cell-particle contact. Biophys. J., 120, 3527-3537(2021).

    [4] V. M. Freitas, G. Hilfenhaus, M. L. Iruela-Arispe. Metastasis of circulating tumor cells: speed matters. Dev. Cell, 45, 3-5(2018).

    [5] Q. Zhao, H. W. Wang, P. P. Yu, S. H. Zhang, J. H. Zhou, Y. M. Li, L. Gong. Trapping and manipulation of single cells in crowded environments. Front Bioeng. Biotechnol., 8, 422(2020).

    [6] A. Ashkin, J. M. Dziedzic, T. Yamane. Optical trapping and manipulation of single cells using infrared-laser beams. Nature, 330, 769-771(1987).

    [7] A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature, 457, 71-75(2009).

    [8] M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, Y. M. Li. Trapping red blood cells in living animals using optical tweezers. Nat. Commun., 4, 1768(2013).

    [9] M. C. Zhong, L. Gong, J. H. Zhou, Z. Q. Wang, Y. M. Li. Optical trapping of red blood cells in living animals with a water immersion objective. Opt. Lett., 38, 5134-5137(2013).

    [10] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [11] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [12] Y. J. Yang, Y. X. Ren, M. Z. Chen, Y. Arita, C. Rosales-Guzman. Optical trapping with structured light: a review. Adv. Photon., 3, 034001(2021).

    [13] J. C. Ndukaife, A. V. Kildishev, A. G. Nnanna, V. M. Shalaev, S. T. Wereley, A. Boltasseva. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat. Nanotechnol., 11, 53-59(2016).

    [14] V. Sharma, D. Paul, S. K. Chaubey, S. Tiwari, G. V. P. Kumar. Large-scale optothermal assembly of colloids mediated by a gold microplate. J. Phys. Condens. Matter, 32, 324002(2020).

    [15] P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, G. V. P. Kumar. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles. Nat. Commun., 5, 4357(2014).

    [16] W. Ding, T. Zhu, L.-M. Zhou, C.-W. Qiu. Photonic tractor beams: a review. Adv. Photon., 1, 024001(2019).

    [17] Y. Q. Zhang, X. J. Dou, Y. M. Dai, X. Y. Wang, C. J. Min, X. C. Yuan. All-optical manipulation of micrometer-sized metallic particles. Photon. Res., 6, 66-71(2018).

    [18] Y. Zhang, C. Min, X. Dou, X. Wang, H. P. Urbach, M. G. Somekh, X. Yuan. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci. Appl., 10, 59(2021).

    [19] M. L. Juan, M. Righini, R. Quidant. Plasmon nano-optical tweezers. Nat. Photonics, 5, 349-356(2011).

    [20] Z.-S. Li, T.-W. Lu, P.-R. Huang, P.-T. Lee. Efficient nano-tweezers via a silver plasmonic bowtie notch with curved grooves. Photon. Res., 9, 281-288(2021).

    [21] C. Hong, S. Yang, J. C. Ndukaife. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nat. Nanotechnol., 15, 908-913(2020).

    [22] L. Lin, X. Peng, X. Wei, Z. Mao, C. Xie, Y. Zheng. Thermophoretic tweezers for low-power and versatile manipulation of biological cells. ACS Nano, 11, 3147-3154(2017).

    [23] D. Niether, S. Wiegand. Thermophoresis of biological and biocompatible compounds in aqueous solution. J. Phys. Condens. Matter, 31, 503003(2019).

    [24] S. Liu, L. Lin, H. B. Sun. Opto-thermophoretic manipulation. ACS Nano, 15, 5925-5943(2021).

    [25] M. Braun, A. P. Bregulla, K. Gunther, M. Mertig, F. Cichos. Single molecules trapped by dynamic inhomogeneous temperature fields. Nano Lett., 15, 5499-5505(2015).

    [26] M. Braun, F. Cichos. Optically controlled thermophoretic trapping of single nano-objects. ACS Nano, 7, 11200-11208(2013).

    [27] F. M. Weinert, D. Braun. Observation of slip flow in thermophoresis. Phys. Rev. Lett., 101, 168301(2008).

    [28] J. A. Park, L. Atia, J. A. Mitchel, J. J. Fredberg, J. P. Butler. Collective migration and cell jamming in asthma, cancer and development. J. Cell Sci., 129, 3375-3383(2016).

    [29] C. P. Heisenberg, Y. Bellaiche. Forces in tissue morphogenesis and patterning. Cell, 153, 948-962(2013).

    [30] C. Guillot, T. Lecuit. Mechanics of epithelial tissue homeostasis and morphogenesis. Science, 340, 1185-1189(2013).

    [31] G. Makey, S. Galioglu, R. Ghaffari, E. D. Engin, G. Yıldırım, Ö. Yavuz, O. Bektaş, Ü. S. Nizam, Ö. Akbulut, Ö. Şahin, K. Güngör, D. Dede, H. V. Demir, F. Ö. Ilday, S. Ilday. Universality of dissipative self-assembly from quantum dots to human cells. Nat. Phys., 16, 795-801(2020).

    [32] P. Yeh, A. Yariv, C. S. Hong. Electromagnetic propagation in periodic stratified media. 1. General theory. J. Opt. Soc. Am., 67, 423-438(1977).

    [33] L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, H. P. Herzig. Manipulating Bloch surface waves in 2D: a platform concept-based flat lens. Light Sci. Appl., 3, e124(2014).

    [34] E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, F. Giorgis. Guided Bloch surface waves on ultrathin polymeric ridges. Nano Lett., 10, 2087-2091(2010).

    [35] K. R. Safronov, D. N. Gulkin, I. M. Antropov, K. A. Abrashitova, V. O. Bessonov, A. A. Fedyanin. Multimode interference of Bloch surface electromagnetic waves. ACS Nano, 14, 10428-10437(2020).

    [36] R. Badugu, K. Nowaczyk, E. Descrovi, J. R. Lakowicz. Radiative decay engineering 6: fluorescence on one-dimensional photonic crystals. Anal. Biochem., 442, 83-96(2013).

    [37] I. V. Soboleva, V. V. Moskalenko, A. A. Fedyanin. Giant Goos-Hanchen effect and Fano resonance at photonic crystal surfaces. Phys. Rev. Lett., 108, 123901(2012).

    [38] F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, S. Kéna-Cohen. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol., 13, 906-909(2018).

    [39] K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, B. Z. Gao. Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy. Opt. Lett., 34, 971-973(2009).

    [40] C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, X. C. Yuan. Focused plasmonic trapping of metallic particles. Nat. Commun., 4, 2891(2013).

    [41] J. N. Reddy. On the numerical-solution of differential-equations by the finite-element method. 1. An introduction to the finite-element method — the Ritz models. Indian J. Pure Appl. Math., 16, 1341-1376(1985).

    [42] L. Lin, X. Peng, Z. Mao, X. Wei, C. Xie, Y. Zheng. Interfacial-entropy-driven thermophoretic tweezers. Lab Chip, 17, 3061-3070(2017).

    [43] J. O’m. Bockris, M. A. V. Devanathan, K. Müller. On the structure of charged interfaces. Proc. R. Soc. London A, 274, 55-79(1963).

    [44] A. Caciagli, R. Singh, D. Joshi, R. Adhikari, E. Eiser. Controlled optofluidic crystallization of colloids tethered at interfaces. Phys. Rev. Lett., 125, 068001(2020).

    [45] Y. Kuai, J. X. Chen, X. Tang, Y. F. Xiang, F. Y. Lu, C. F. Kuang, L. Xu, W. D. Shen, J. J. Cheng, H. Q. Gui, G. Zou, P. Wang, H. Ming, J. G. Liu, X. Liu, J. R. Lakowicz, D. G. Zhang. Label-free surface-sensitive photonic microscopy with high spatial resolution using azimuthal rotation illumination. Sci. Adv., 5, eaav5335(2019).

    [46] X. Zhao, Z. Yu, T. Ding. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms, 8, 425(2020).

    [47] K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, J. Dostálek. Bloch surface wave-enhanced fluorescence biosensor. Biosens. Bioelectron., 43, 108-114(2013).

    [48] A. Farmer, A. C. Friedli, S. M. Wright, W. M. Robertson. Biosensing using surface electromagnetic waves in photonic band gap multilayers. Sens. Actuators B, 173, 79-84(2012).

    [49] A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, F. Michelotti. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sens. Actuators B, 174, 292-298(2012).

    Fengya Lu, Lei Gong, Yan Kuai, Xi Tang, Yifeng Xiang, Pei Wang, Douguo Zhang. Controllable optofluidic assembly of biological cells using an all-dielectric one-dimensional photonic crystal[J]. Photonics Research, 2022, 10(1): 14
    Download Citation