• Journal of Semiconductors
  • Vol. 42, Issue 4, 041305 (2021)
Mengxi Tan1, Xingyuan Xu2, Jiayang Wu1, Thach G. Nguyen3, Sai T. Chu4, Brent E. Little5, Arnan Mitchell3, Roberto Morandotti6、7, and David J. Moss1
Author Affiliations
  • 1Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
  • 2Electro-Photonics Laboratory, Department of Electrical and Computer Systems Engineering, Monash University, VIC3800, Australia
  • 3School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
  • 4Department of Physics, City University of Hong Kong, Hong Kong, China
  • 5State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an 710119, China
  • 6INRS -Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
  • 7Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • show less
    DOI: 10.1088/1674-4926/42/4/041305 Cite this Article
    Mengxi Tan, Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Sai T. Chu, Brent E. Little, Arnan Mitchell, Roberto Morandotti, David J. Moss. Orthogonally polarized RF optical single sideband generation with integrated ring resonators[J]. Journal of Semiconductors, 2021, 42(4): 041305 Copy Citation Text show less
    References

    [1] J Capmany, D Novak. Microwave photonics combines two worlds. Nat Photonics, 1, 319(2007).

    [2] J P Yao. Microwave photonics. J Lightwave Technol, 27, 314(2009).

    [3] K Xu, R X Wang, Y T Dai et al. Microwave photonics: Radio-over-fiber links, systems, and applications. Photon Res, 2, B54(2014).

    [4] U Gliese, S Norskov, T N Nielsen. Chromatic dispersion in fiber-optic microwave and millimeter-wave links. IEEE Trans Microw Theory Tech, 44, 1716(1996).

    [5] Y M Zhang, F Z Zhang, S L Pan. Optical single sideband modulation with tunable optical carrier-to-sideband ratio. IEEE Photonics Technol Lett, 26, 653(2014).

    [6] S R Blais, J P Yao. Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating. IEEE Photonics Technol Lett, 18, 2230(2006).

    [7] D Q Feng, J Q Sun. Optical single sideband modulation based on a high-order birefringent filter using cascaded Solc-Sagnac and Lyot-Sagnac loops. Opt Lett, 41, 3659(2016).

    [8] Y C Shen, X M Zhang, K S Chen. Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering. IEEE Photonics Technol Lett, 17, 1277(2005).

    [9] B Hraimel, X P Zhang, Y Q Pei et al. Optical single-sideband modulation with tunable optical carrier to sideband ratio in radio over fiber systems. J Lightwave Technol, 29, 775(2011).

    [10] M Xue, S L Pan, Y J Zhao. Optical single-sideband modulation based on a dual-drive MZM and a 120° hybrid coupler. J Lightwave Technol, 32, 3317(2014).

    [11] X Y Xu, J Y Wu, T G Nguyen et al. Photonic microwave true time delays for phased array antennas using a 49  GHz FSR integrated optical micro-comb source. Photon Res, 6, B30(2018).

    [12] X X Xue, Y Xuan, H J Kim et al. Programmable single-bandpass photonic RF filter based on kerr comb from a microring. J Lightwave Technol, 32, 3557(2014).

    [13] X Y Xu, J Y Wu, T G Nguyen et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt Express, 26, 2569(2018).

    [14] T G Nguyen, M Shoeiby, S T Chu et al. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt Express, 23, 22087(2015).

    [15] X Y Xu, J Y Wu, T G Nguyen et al. Broadband RF channelizer based on an integrated optical frequency kerr comb source. J Lightwave Technol, 36, 4519(2018).

    [16] M Ferrera, C Reimer, A Pasquazi et al. CMOS compatible integrated all-optical radio frequency spectrum analyzer. Opt Express, 22, 21488(2014).

    [17] B Corcoran, T D Vo, M D Pelusi et al. Silicon nanowire based radio-frequency spectrum analyzer. Opt Express, 18, 20190(2010).

    [18] M Pelusi, F Luan, T D Vo et al. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nat Photonics, 3, 139(2009).

    [19] X Y Xu, J Y Wu, M X Tan et al. Orthogonally polarized RF optical single sideband generation and dual-channel equalization based on an integrated microring resonator. J Lightwave Technol, 36, 4808(2018).

    [20] X Xu, J Wu, T G Nguyen et al. Continuously tunable orthogonally polarized optical RF single sideband generator and equalizer based on an integrated micro-ring resonator. J Opt, 20, 115701(2018).

    [21] M X Tan, X Y Xu, B Corcoran et al. Microwave and RF photonic fractional Hilbert transformer based on a 50 GHz Kerr micro-comb. J Lightwave Technol, 37, 6097(2019).

    [22] X Y Xu, M X Tan, J Y Wu et al. Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source. J Lightwave Technol, 37, 1288(2019).

    [23] X Y Xu, M X Tan, J Y Wu et al. High performance RF filters via bandwidth scaling with Kerr micro-combs. APL Photonics, 4, 026102(2019).

    [24] X Y Xu, M X Tan, J Y Wu et al. Microcomb-based photonic RF signal processing. IEEE Photonics Technol Lett, 31, 1854(2019).

    [25] X Y Xu, M X Tan, J Wu et al. Photonic RF phase-encoded signal generation with a microcomb source. J Lightwave Technol, 38, 1722(2020).

    [26] X Y Xu, J Y Wu, M X Tan et al. Broadband microwave frequency conversion based on an integrated optical micro-comb source. J Lightwave Technol, 38, 332(2020).

    [27] M X Tan, X Y Xu, B Corcoran et al. RF and microwave fractional differentiator based on photonics. IEEE Trans Circuits Syst II, 67, 2767(2020).

    [28] X Y Xu, M X Tan, B Corcoran et al. Photonic perceptron based on a kerr microcomb for high-speed, scalable, optical neural networks. Laser Photonics Rev, 14, 2000070(2020).

    [29] M X Tan, X Y Xu, J Y Wu et al. Photonic RF and microwave filters based on 49 GHz and 200 GHz Kerr microcombs. Opt Commun, 465, 125563(2020).

    [30] X Y Xu, M X Tan, J Y Wu et al. Photonic RF and microwave integrator based on a transversal filter with soliton crystal microcombs. IEEE Trans Circuits Syst II, 67, 3582(2020).

    [31] X Y Xu, M X Tan, J Y Wu et al. Broadband photonic RF channelizer with 92 channels based on a soliton crystal microcomb. J Lightwave Technol, 38, 5116(2020).

    [32] M Tan, X Xu, A Boes et al. Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source. J Lightwave Technol, 38, 6221(2020).

    [33] B Corcoran, M X Tan, X Y Xu et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat Commun, 11, 2568(2020).

    [34] J Wu, X Xu, T G Nguyen et al. RF photonics: An optical microcombs’ perspective. IEEE J Sel Top Quantum, 24, 1(2018).

    [35] X Y Xu, J Y Wu, M Shoeiby et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photonics, 2, 096104(2017).

    [36] M Tan, u X Xu, u J Wu et al. RF and microwave photonic temporal signal processing with Kerr micro-combs. Adv Phys X, 6, 1838946(2021).

    [37] X Xu, M Tan, B Corcoran et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44(2021).

    [38] S L Pan, Y M Zhang. Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer. Opt Lett, 37, 4483(2012).

    [39] L Wang, W Li, H Wang et al. Photonic generation of phase coded microwave pulses using cascaded polarization modulators. IEEE Photonics Technol Lett, 25, 678(2013).

    [40] L Wang, W Li, J Zheng et al. High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation. Opt Lett, 38, 579(2013).

    [41] Z H Li, C Y Yu, Y Dong et al. Linear photonic radio frequency phase shifter using a differential-group-delay element and an optical phase modulator. Opt Lett, 35, 1881(2010).

    [42] B Vidal, T Mengual, C Ibanez-Lopez et al. Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays. IEEE Photonics Technol Lett, 18, 2590(2006).

    [43] J Y Zheng, L X Wang, Z Dong et al. Orthogonal single-sideband signal generation using improved Sagnac-loop-based modulator. IEEE Photonics Technol Lett, 26, 2229(2014).

    [44] W Wang, J Liu, H Mei et al. Phase-coherent orthogonally polarized optical single sideband modulation with arbitrarily tunable optical carrier-to-sideband ratio. Opt Express, 24, 388(2016).

    [45] Y M Zhang, F Z Zhang, S L Pan. Optical single sideband polarization modulation for radio-over-fiber system and microwave photonic signal processing. Photon Res, 2, B80(2014).

    [46] A L Campillo. Orthogonally polarized single sideband modulator. Opt Lett, 32, 3152(2007).

    [47] M Sagues, A Loayssa. Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering. Opt Express, 18, 22906(2010).

    [48] W Li, N Zhu, L Wang. Perfectly orthogonal optical single-sideband signal generation based on stimulated Brillouin scattering. IEEE Photonics Technol Lett, 24, 751(2012).

    [49] L Nebuloni, G Orsenigo. Microwave power module for space applications. IEEE Trans Electron Devices, 48, 88(2001).

    [50] H Wang, B Yan, Z G Wang et al. A broadband microwave gain equalizer. PIER Lett, 33, 63(2012).

    [51] S X Wang, Y F Wang, D W Zhang et al. Design of tunable equalizers using multilayered half mode substrate integrated waveguide structures added absorbing Pillars. Adv Mater Sci Eng, 2015, 1(2015).

    [52] D W Zhang, Q Liu, Z Dongfang et al. A gain equalizer based on dual-mode circular substrate integrated waveguide resonators. IEEE Microw Wirel Components Lett, 27, 539(2017).

    [53] D Marpaung, C Roeloffzen, R Heideman et al. Integrated microwave photonics. Laser Photonics Rev, 7, 506(2013).

    [54] W L Liu, M Li, R S Guzzon et al. A fully reconfigurable photonic integrated signal processor. Nat Photonics, 10, 190(2016).

    [55] D J Moss, R Morandotti, A L Gaeta et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics, 7, 597(2013).

    [56] M Ferrera, L Razzari, D Duchesne et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics, 2, 737(2008).

    [57] M Peccianti, M Ferrera, L Razzari et al. Subpicosecond optical pulse compression via an integrated nonlinear chirper. Opt Express, 18, 7625(2010).

    [58] L Razzari, D Duchesne, M Ferrera et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat Photonics, 4, 41(2010).

    [59] A Pasquazi, M Peccianti, L Razzari et al. Micro-combs: A novel generation of optical sources. Phys Rep, 729, 1(2018).

    [60] L Caspani, C Xiong, B Eggleton et al. On-chip sources of quantum correlated and entangled photons. Light: Sci Appl, 6, e17100(2017).

    [61] M Kues, C Reimer, B Wetzel et al. Passively mode-locked laser with an ultra-narrow spectral width. Nat Photonics, 11, 159(2017).

    [62] A Pasquazi, M Peccianti, B E Little et al. Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator. Opt Express, 20, 27355(2012).

    [63] A Pasquazi, L Caspani, M Peccianti et al. Self-locked optical parametric oscillation in a CMOS compatible microring resonator: A route to robust optical frequency comb generation on a chip. Opt Express, 21, 13333(2013).

    [64] C Reimer, S Sciara, P Roztocki et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat Phys, 15, 148(2019).

    [65] M Kues, C Reimer, J M Lukens et al. Quantum optical microcombs. Nat Photonics, 13, 170(2019).

    [66] A Pasquazi, M Peccianti, Y Park et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nat Photonics, 5, 618(2011).

    [67] H L Bao, A Cooper, M Rowley et al. Laser cavity-soliton microcombs. Nat Photonics, 13, 384(2019).

    [68] C Reimer, M Kues, L Caspani et al. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nat Commun, 6, 8236(2015).

    [69] L Caspani, C Reimer, M Kues et al. Multifrequency sources of quantum correlated photon pairs on-chip: A path toward integrated quantum frequency combs. Nanophotonics, 5, 351(2016).

    [70] C Reimer, M Kues, P Roztocki et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 351, 1176(2016).

    [71] M Kues, C Reimer, P Roztocki et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546, 622(2017).

    [72] P Roztocki, M Kues, C Reimer et al. Practical system for the generation of pulsed quantum frequency combs. Opt Express, 25, 18940(2017).

    [73] J S Levy, A Gondarenko, M A Foster et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photonics, 4, 37(2010).

    [74] X X Xue, Y Xuan, C Wang et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt Express, 24, 687(2016).

    [75] A Pasquazi, R Ahmad, M Rochette et al. All-optical wavelength conversion in an integrated ring resonator. Opt Express, 18, 3858(2010).

    [76] J Y Wu, J Z Peng, B Y Liu et al. Passive silicon photonic devices for microwave photonic signal processing. Opt Commun, 373, 44(2016).

    [77] B E Little, S T Chu, H A Haus et al. Microring resonator channel dropping filters. J Lightwave Technol, 15, 998(1997).

    [78] B E Little, S T Chu, P P Absil et al. Very high-order microring resonator filters for WDM applications. IEEE Photonics Technol Lett, 16, 2263(2004).

    [79] J Y Wu, T Moein, X Y Xu et al. Advanced photonic filters based on cascaded Sagnac loop reflector resonators in silicon-on-insulator nanowires. APL Photonics, 3, 046102(2018).

    [80] J Y Wu, T Moein, X Y Xu et al. Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity. APL Photonics, 2, 056103(2017).

    [81] N Cui, X G Zhang, Z B Zheng et al. Two-parameter-SOP and three-parameter-RSOP fiber channels: Problem and solution for polarization demultiplexing using Stokes space. Opt Express, 26, 21170(2018).

    [82] Q F Xu. Lipson M. All-optical logic based on silicon micro-ring resonators. Opt Express, 15, 924(2007).

    [83] A Godbole, P P Dali, V Janyani et al. All optical scalable logic gates using Si3N4 microring resonators. IEEE J Sel Top Quantum Electron, 22, 326(2016).

    [84] B Gerislioglu, A Ahmadivand, M Karabiyik et al. VO2 -based reconfigurable antenna platform with addressable microheater matrix. Adv Electron Mater, 3, 1700170(2017).

    [85] C Akcay, P Parrein, J P Rolland. Estimation of longitudinal resolution in optical coherence imaging. Appl Opt, 41, 5256(2002).

    [86] J Y Wu, P Cao, T Pan et al. Compact on-chip 1 × 2 wavelength selective switch based on silicon microring resonator with nested pairs of subrings. Photon Res, 3, 9(2015).

    [87]

    Mengxi Tan, Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Sai T. Chu, Brent E. Little, Arnan Mitchell, Roberto Morandotti, David J. Moss. Orthogonally polarized RF optical single sideband generation with integrated ring resonators[J]. Journal of Semiconductors, 2021, 42(4): 041305
    Download Citation