[1] Moses E I. The national ignition facility and the national ignition campaign[J]. IEEE Transactions on Plasma Science, 38, 684-689(2010).
[2] Lindl J, Landen O, Edwards J et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 21, 020501(2014).
[3] Zylstra A B, Casey D T, Kritcher A et al. Hot-spot mix in large-scale HDC implosions at NIF[J]. Physics of Plasmas, 27, 092709(2020).
[4] Hurricane O A, Callahan D A, Casey D T et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 12, 800-806(2016).
[5] Edwards M J, Patel P K, Lindl J D et al. Progress towards ignition on the national ignition facility[J]. Physics of Plasmas, 20, 070501(2013).
[6] Hurricane O A, Callahan D A, Casey D T et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 506, 343-348(2014).
[7] le Pape S, Hopkins L F B, Divol L et al. Fusion energy output greater than the kinetic energy of an imploding shell at the national ignition facility[J]. Physical Review Letters, 120, 245003(2018).
[8] Casey D T, Thomas C A, Baker K L et al. The high velocity, high adiabat, “Bigfoot” campaign and tests of indirect-drive implosion scaling[J]. Physics of Plasmas, 25, 056308(2018).
[9] Zylstra A B, Kritcher A L, Hurricane O A et al. Record energetics for an inertial fusion implosion at NIF[J]. Physical Review Letters, 126, 025001(2021).
[10] Hohenberger M, Casey D T, Kritcher A L et al. Integrated performance of large HDC-capsule implosions on the National Ignition Facility[J]. Physics of Plasmas, 27, 112704(2020).
[11] Kritcher A L, Casey D T, Thomas C A et al. Symmetric fielding of the largest diamond capsule implosions on the NIF[J]. Physics of Plasmas, 27, 052710(2020).
[12] Robey H F, Berzak Hopkins L, Milovich J L et al. The I-Raum: a new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility[J]. Physics of Plasmas, 25, 012711(2018).
[13] Kritcher A L, Zylstra A B, Callahan D A et al. Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E[J]. Physics of Plasmas, 28, 072706(2021).
[14] Leeper R J, Ruiz C L, Chandler G A et al. ZR neutron diagnostic suite[J]. Journal of Physics: Conference Series, 112, 032076(2008).
[15] Rochau G A, Bailey J E, Chandler G A et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 49, B591-B600(2007).
[16] Slutz S A, Bailey J E, Chandler G A et al. Dynamic hohlraum driven inertial fusion capsules[J]. Physics of Plasmas, 10, 1875-1882(2003).
[17] Smirnov V P. Fast liners for inertial fusion[J]. Plasma Physics and Controlled Fusion, 33, 1697-1714(1991).
[18] Brownell J H, Bowers R L. McLenithan K D, et al. Radiation environments produced by plasma Z-pinch stagnation on central targets[J]. Physics of Plasmas, 5, 2071-2080(1998).
[19] Slutz S A, Herrmann M C, Vesey R A et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 17, 056303(2010).
[20] Cuneo M E, Herrmann M C, Sinars D B et al. Magnetically driven implosions for inertial confinement fusion at Sandia national laboratories[J]. IEEE Transactions on Plasma Science, 40, 3222-3245(2012).
[21] Slutz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Physical Review Letters, 108, 025003(2012).
[22] Bailey J E, Chandler G A, Slutz S A et al. Hot dense capsule-implosion cores produced by Z-pinch dynamic Hohlraum radiation[J]. Physical Review Letters, 92, 085002(2004).
[23] Sanford T W L, Lemke R W, Mock R C et al. Dynamics and characteristics of a 215-eV dynamic-hohlraum X-ray source on Z[J]. Physics of Plasmas, 9, 3573-3594(2002).
[24] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 2, 3933-4024(1995).
[25] Bailey J E, Chandler G A, Mancini R C et al. Dynamic hohlraum radiation hydrodynamics[J]. Physics of Plasmas, 13, 056301(2006).
[26] Ruiz C L, Cooper G W, Slutz S A et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums[J]. Physical Review Letters, 93, 015001(2004).
[27] Sinars D B, Sweeney M A, Alexander C S et al. Review of pulsed power-driven high energy density physics research on Z at Sandia[J]. Physics of Plasmas, 27, 070501(2020).
[28] Gomez M R, Slutz S A, Sefkow A B et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 113, 155003(2014).
[29] Gomez M R, Slutz S A, Jennings C A et al. Performance scaling in magnetized liner inertial fusion experiments[J]. Physical Review Letters, 125, 155002(2020).
[30] Goncharov V N, Sangster T C, Radha P B et al. Performance of direct-drive cryogenic targets on OMEGA[J]. Physics of Plasmas, 15, 056310(2008).
[31] McKenty P W, Sangster T C, Alexander M et al. Direct-drive cryogenic target implosion performance on OMEGA[J]. Physics of Plasmas, 11, 2790-2797(2004).
[32] Rovang D C, Lamppa D C, Cuneo M E et al. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia’s Z facility[J]. The Review of Scientific Instruments, 85, 124701(2014).
[33] Slutz S A, Jennings C A, Awe T J et al. Auto-magnetizing liners for magnetized inertial fusion[J]. Physics of Plasmas, 24, 012704(2017).
[34] Shipley G A, Awe T J, Hutsel B T et al. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns[J]. Physics of Plasmas, 25, 052703(2018).
[35] Yager-Elorriaga D A, Gomez M R, Ruiz D E et al. An overview of magneto-inertial fusion on the Z machine at Sandia National Laboratories[J]. Nuclear Fusion, 62, 042015(2022).
[36] Xiao D L, Ding N, Wang G Q et al. Review of Z-pinch driven fusion and high energy density physics applications[J]. High Power Laser and Particle Beams, 32, 092005(2020).
[37] Huang X B, Xu Q, Wang K L et al. Progress on high energy density physics experiments with pinch devices[J]. High Power Laser and Particle Beams, 33, 012002(2021).
[38] Meng S J, Hu Q Y, Ning J M et al. Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1[J]. Physics of Plasmas, 24, 014505(2017).
[39] Ye F, Xiao D L, Qin Y et al. Investigation on the main characteristics of dynamic hohlraum formation at the Julong-1 facility[J]. Physics of Plasmas, 27, 093301(2020).
[40] Yi Q, Guo H S, Hu Q Y et al. On the bremsstrahlung background of the neutron yield diagnostic in deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums on an 8-MA pulsed power facility[J]. Physics of Plasmas, 27, 102709(2020).
[41] Yi Q, Meng S J, Yang J L et al. Estimates of upper limit of neutron yield in experiments with Z-pinch dynamic hohlraums at 8-MA pulsed power facility[J]. Physics of Plasmas, 28, 082706(2021).
[42] Xiao D L, Ye F, Meng S J et al. Preliminary investigation on the radiation transfer in dynamic hohlraums on the PTS facility[J]. Physics of Plasmas, 24, 092701(2017).
[43] Huang X B, Ren X D, Dan J K et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Physics of Plasmas, 24, 092704(2017).
[44] Sanford T W L, Cuneo M E, Bliss D E et al. Demonstrated transparent mode in nested wire arrays used for dynamic hohlraum Z pinches[J]. Physics of Plasmas, 14, 052703(2007).
[45] Nash T J, Derzon M S, Allshouse G et al. Dynamic hohlraum experiments on SATURN[C]. AIP Conference Proceedings, 409, 175-182(1997).
[46] Derzon M S, Allshouse G O, Deeney C et al[R]. Experimental results and modeling of a dynamic hohlraum on SATURN Albuquerque: Sandia National Lab, 1998.
[47] Callahan D A, Hurricane O A, Kritcher A L et al. A simple model to scope out parameter space for indirect drive designs on NIF[J]. Physics of Plasmas, 27, 072704(2020).
[48] MacLaren S A, Masse L P, Czajka C E et al. A near one-dimensional indirectly driven implosion at convergence ratio 30[J]. Physics of Plasmas, 25, 056311(2018).
[49] Hu S X, Goncharov V N, Radha P B et al. Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA[J]. Physics of Plasmas, 17, 102706(2010).
[50] Slutz S A, Peterson K J, Vesey R A et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 13, 102701(2006).
[51] Rochau G A, Derzon M S, Fehl D et al. Modeling a one-dimensional bremsstrahlung and neutron imaging array for use on Sandia’s Z machine[J]. Review of Scientific Instruments, 70, 549-552(1999).
[52] Si F N, Yang J L, Xu R K et al. A Pb-TLD spectrometer to measure high energy photons in Z-pinch experiments on the primary test stand[J]. Fusion Engineering and Design, 118, 1-4(2017).
[53] Knoll G F. Radiation detection and measurement[M]. New Jersey: John Wiley & Sons(2010).
[54] Law J J. Isomeric activation of silver with bremsstrahlung[J]. Journal of Nuclear Science and Technology, 8, 351-353(1971).
[55] Yoshida E, Kobayashi T, Kojima Y et al. Half-lives of isomeric levels of 107mAg, 109mAg and 103mRh photoactivated by 60Co γ-ray irradiation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 449, 217-220(2000).
[56] Stoeckl C, Cruz M, Glebov V Y et al. 81(10): 10D302[J]. down-scattered neutron measurements. The Review of Scientific Instruments(2010).
[57] Ruskov E, Glebov V Y, Darling T W et al. Gated liquid scintillator detector for neutron time of flight measurements in a gas-puff Z-pinch experiment[J]. The Review of Scientific Instruments, 90, 073505(2019).
[58] Lauck R, Brandis M, Bromberger B et al. Low-afterglow, high-refractive-index liquid scintillators for fast-neutron spectrometry and imaging applications[J]. IEEE Transactions on Nuclear Science, 56, 989-993(2009).
[59] Gong J W, Chen B. Core devices and coupling modes of indirect X-ray detectors[J]. Laser & Optoelectronics Progress, 59, 0700003(2022).
[60] Apruzese J P, Davis J, Whitney K G et al. The physics of radiation transport in dense plasmas[J]. Physics of Plasmas, 9, 2411-2419(2002).
[61] Bennett G R, Sinars D B, Wenger D F et al. 77(10): 10E322[J]. high-spatial-resolution, 6.151 keV X-ray imaging of inertial confinement fusion capsule implosion, complex hydrodynamics experiments on Sandia’s Z accelerator, invited, . Review of Scientific Instruments(2006).
[62] Nash T, Derzon M, Leeper R et al. Spatially and temporally resolved crystal spectrometer for diagnosing high-temperature pinch plasmas on Z[J]. Review of Scientific Instruments, 70, 302-304(1999).
[63] Harding E C, Ao T, Bailey J E et al. Analysis and implementation of a space resolving spherical crystal spectrometer for X-ray Thomson scattering experiments[J]. The Review of Scientific Instruments, 86, 043504(2015).
[64] Zhou W M, Yu M H, Zhang T K et al. High-resolution X-ray backlight radiography using picosecond petawatt laser[J]. Chinese Journal of Lasers, 47, 0500010(2020).
[65] Ao T, Harding E C, Bailey J E et al. Relative X-ray collection efficiency, spatial resolution, and spectral resolution of spherically-bent quartz, mica, germanium, and pyrolytic graphite crystals[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 144, 92-107(2014).
[66] Wang Z S, Huang Q S, Zhang Z et al. Extreme ultraviolet, X-ray and neutron thin film optical components and systems[J]. Acta Optica Sinica, 41, 0131001(2021).
[67] del Río M S, Dejus R J. XOP 2.1: a new version of the X-ray optics software toolkit[C]. AIP Conference Proceedings, 705, 784-787(2004).