• Laser & Optoelectronics Progress
  • Vol. 59, Issue 6, 0617001 (2022)
Zhe Feng1、2、3 and Jun Qian1、2、3、*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou , Zhejiang 310058, China
  • 2Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou , Zhejiang 310058, China
  • 3International Research Center for Advanced Photonics, Zhejiang University, Haining, Zhejiang 314400, China
  • show less
    DOI: 10.3788/LOP202259.0617001 Cite this Article Set citation alerts
    Zhe Feng, Jun Qian. Advances on in vivo Fluorescence Bioimaging in the Second Near-Infrared Window[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617001 Copy Citation Text show less
    References

    [1] Lim Y T, Kim S, Nakayama A et al. Selection of quantum dot wavelengths for biomedical assays and imaging[J]. Molecular Imaging, 2, 50-64(2003).

    [2] Welsher K, Liu Z, Sherlock S P et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice[J]. Nature Nanotechnology, 4, 773-780(2009).

    [3] Smith A M, Mancini M C, Nie S M. Bioimaging: second window for in vivo imaging[J]. Nature Nanotechnology, 4, 710-711(2009).

    [4] Chang B S, Li D F, Ren Y et al. A phosphorescent probe for in vivo imaging in the second near-infrared window[J]. Nature Biomedical Engineering, 1-11(2021).

    [5] Liu Y S, Li Y, Koo S et al. Versatile types of inorganic/organic NIR-IIa/IIb fluorophores: from strategic design toward molecular imaging and theranostics[J]. Chemical Reviews, 122, 209-268(2022).

    [6] Antaris A L, Chen H, Cheng K et al. A small-molecule dye for NIR-II imaging[J]. Nature Materials, 15, 235-242(2016).

    [7] Zhong Y T, Ma Z R, Wang F F et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles[J]. Nature Biotechnology, 37, 1322-1331(2019).

    [8] Hong G S, Lee J C, Robinson J T et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence[J]. Nature Medicine, 18, 1841-1846(2012).

    [9] Hong G S, Diao S, Chang J L et al. Through-skull fluorescence imaging of the brain in a new near-infrared window[J]. Nature Photonics, 8, 723-730(2014).

    [10] Wang T, Wang S F, Liu Z Y et al. A hybrid erbium(III): bacteriochlorin near-infrared probe for multiplexed biomedical imaging[J]. Nature Materials, 20, 1571-1578(2021).

    [11] Li J, Liu Y, Xu Y L et al. Recent advances in the development of NIR-II organic emitters for biomedicine[J]. Coordination Chemistry Reviews, 415, 213318(2020).

    [12] Dai H M, Shen Q, Shao J J et al. Small molecular NIR-II fluorophores for cancer phototheranostics[J]. The Innovation, 2, 100082(2021).

    [13] Kou L, Labrie D, Chylek P. Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range[J]. Applied Optics, 32, 3531-3540(1993).

    [14] Bosschaart N, Edelman G J, Aalders M C G et al. A literature review and novel theoretical approach on the optical properties of whole blood[J]. Lasers in Medical Science, 29, 453-479(2014).

    [15] Bashkatov A N, Genina É A, Kochubey V I et al. Optical properties of the subcutaneous adipose tissue in the spectral range 400‒2500 nm[J]. Optics and Spectroscopy, 99, 836-842(2005).

    [16] Benayas A, Hemmer E, Hong G S et al[M]. Near infrared-emitting nanoparticles for biomedical applications(2020).

    [17] Golovynskyi S, Golovynska I, Stepanova L I et al. Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications[J]. Journal of Biophotonics, 11, e201800141(2018).

    [18] Diao S, Hong G S, Antaris A L et al. Biological imaging without autofluorescence in the second near-infrared region[J]. Nano Research, 8, 3027-3034(2015).

    [19] Feng Z, Tang T, Wu T X et al. Perfecting and extending the near-infrared imaging window[J]. Light: Science & Applications, 10, 197(2021).

    [20] Tanzid M, Hogan N J, Sobhani A et al. Absorption-induced image resolution enhancement in scattering media[J]. ACS Photonics, 3, 1787-1793(2016).

    [21] Carr J A, Aellen M, Franke D et al. Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 9080-9085(2018).

    [22] Wu D, Xue D W, Zhou J et al. Extrahepatic cholangiography in near-infrared II window with the clinically approved fluorescence agent indocyanine green: a promising imaging technology for intraoperative diagnosis[J]. Theranostics, 10, 3636-3651(2020).

    [23] Carr J A, Franke D, Caram J R et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 4465-4470(2018).

    [24] Yu X M, Feng Z, Cai Z C et al. Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy[J]. Journal of Materials Chemistry. B, 7, 6623-6629(2019).

    [25] Xue D W, Wu D, Lu Z Y et al. Structural and functional NIR-II fluorescence bioimaging in urinary system via clinically approved dye methylene blue[J]. bioRxiv, 917955(2020).

    [26] Feng Z, Yu X M, Jiang M X et al. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor[J]. Theranostics, 9, 5706-5719(2019).

    [27] Zhu S, Hu Z, Tian R et al. Repurposing cyanine NIR-I dyes accelerates clinical translation of near-infrared-II (NIR-II) bioimaging[J]. Advanced Materials, 30, e1802546(2018).

    [28] Zhu S J, Yung B C, Chandra S et al. Near-infrared-II (NIR-II) bioimaging via off-peak NIR-I fluorescence emission[J]. Theranostics, 8, 4141-4151(2018).

    [29] Li B H, Lu L F, Zhao M Y et al. An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging[J]. Angewandte Chemie (International Ed. in English), 57, 7483-7487(2018).

    [30] Li B H, Zhao M Y, Feng L S et al. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging[J]. Nature Communications, 11, 3102(2020).

    [31] Yang Q L, Hu Z B, Zhu S J et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance[J]. Journal of the American Chemical Society, 140, 1715-1724(2018).

    [32] Lei Z H, Zhang F. Molecular engineering of NIR-II fluorophores for improved biomedical detection[J]. Angewandte Chemie (International Ed. in English), 60, 16294-16308(2021).

    [33] Wan H, Ma H L, Zhu S J et al. Developing a bright NIR-II fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1[J]. Advanced Functional Materials, 28, 1804956(2018).

    [34] Wang W Z, Ma Z R, Zhu S J et al. Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II fluorophore-peptide probe[J]. Advanced Materials, 30, e1800106(2018).

    [35] Li B H, Zhao M Y, Zhang F. Rational design of near-infrared-II organic molecular dyes for bioimaging and biosensing[J]. ACS Materials Letters, 2, 905-917(2020).

    [36] Qu C R, Xiao Y L, Zhou H et al. Quaternary ammonium salt based NIR-II probes for in vivo imaging[J]. Advanced Optical Materials, 7, 1900229(2019).

    [37] Sun C X, Sun X F, Pei P et al. NIR-II J-aggregates labelled mesoporous implant for imaging-guided osteosynthesis with minimal invasion[J]. Advanced Functional Materials, 31, 2100656(2021).

    [38] Fang Y, Shang J Z, Liu D K et al. Design, synthesis, and application of a small molecular NIR-II fluorophore with maximal emission beyond 1200 nm[J]. Journal of the American Chemical Society, 142, 15271-15275(2020).

    [39] Sun Y, Qu C R, Chen H et al. Novel benzo-bis(1, 2, 5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer[J]. Chemical Science, 7, 6203-6207(2016).

    [40] Lin J C, Li Q Q, Zeng X D et al. A novel small-molecule near-infrared II fluorescence probe for orthotopic osteosarcoma imaging[J]. Science China Chemistry, 63, 766-770(2020).

    [41] Sun Y, Ding M M, Zeng X D et al. Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery[J]. Chemical Science, 8, 3489-3493(2017).

    [42] Birks J B[M]. Photophysics of aromatic molecules, 1294-1295(1970).

    [43] Takezaki M, Kawakami R, Onishi S et al. Integrated fluorescent nanoprobe design for high-speed in vivo two-photon microscopic imaging of deep-brain vasculature in mice[J]. Advanced Functional Materials, 31, 2010698(2021).

    [44] Luo J, Xie Z, Lam J W et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chemical Communications, 1740-1741(2001).

    [45] Kang M M, Zhang Z J, Song N et al. Aggregation-enhanced theranostics: AIE sparkles in biomedical field[J]. Aggregate, 1, 80-106(2020).

    [46] Qian J, Tang B Z. AIE luminogens for bioimaging and theranostics: from organelles to animals[J]. Chem, 3, 56-91(2017).

    [47] Mei J, Leung N L C, Kwok R T K et al. Aggregation-induced emission: together we shine, united we soar![J]. Chemical Reviews, 115, 11718-11940(2015).

    [48] Xu Y Z, Li C B, Xu R H et al. Tuning molecular aggregation to achieve highly bright AIE dots for NIR-II fluorescence imaging and NIR-I photoacoustic imaging[J]. Chemical Science, 11, 8157-8166(2020).

    [49] Zhu W, Kang M M, Wu Q et al. Zwitterionic AIEgens: rational molecular design for NIR-II fluorescence imaging-guided synergistic phototherapy[J]. Advanced Functional Materials, 31, 2007026(2021).

    [50] Qi J, Sun C W, Zebibula A et al. Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region[J]. Advanced Materials, 30, e1706856(2018).

    [51] Feng Z, Bai S Y, Qi J et al. Biologically excretable aggregation-induced emission dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine[J]. Advanced Materials, 33, e2008123(2021).

    [52] Li Y Y, Cai Z C, Liu S J et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels[J]. Nature Communications, 11, 1255(2020).

    [53] Liu S J, Chen R Z, Zhang J Q et al. Incorporation of planar blocks into twisted skeletons: boosting brightness of fluorophores for bioimaging beyond 1500 nanometer[J]. ACS Nano, 14, 14228-14239(2020).

    [54] Yu X M, Ying Y Y, Feng Z et al. Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window[J]. Nano Today, 39, 101235(2021).

    [55] Wu D, Liu S J, Zhou J et al. Organic dots with large π-conjugated planar for cholangiography beyond 1500 nm in rabbits: a non-radioactive strategy[J]. ACS Nano, 15, 5011-5022(2021).

    [56] Hu X M, Tang Y F, Hu Y X et al. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy[J]. Theranostics, 9, 4168-4181(2019).

    [57] Chen Y, Sun B, Jiang X Y et al. Double-acceptor conjugated polymers for NIR-II fluorescence imaging and NIR-II photothermal therapy applications[J]. Journal of Materials Chemistry. B, 9, 1002-1008(2021).

    [58] Zhang W S, Huang T, Li J W et al. Facial control intramolecular charge transfer of quinoid conjugated polymers for efficient in vivo NIR-II imaging[J]. ACS Applied Materials & Interfaces, 11, 16311-16319(2019).

    [59] Verma M, Chan Y H, Saha S et al. Recent developments in semiconducting polymer dots for analytical detection and NIR-II fluorescence imaging[J]. ACS Applied Bio Materials, 4, 2142-2159(2021).

    [60] Hong G S, Zou Y P, Antaris A L et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window[J]. Nature Communications, 5, 4206(2014).

    [61] Liu Y, Liu J F, Chen D D et al. Quinoxaline-based semiconducting polymer dots for in vivo NIR-II fluorescence imaging[J]. Macromolecules, 52, 5735-5740(2019).

    [62] Li Y X, Su S P, Yang C H et al. Molecular design of ultrabright semiconducting polymer dots with high NIR-II fluorescence for 3D tumor mapping[J]. Advanced Healthcare Materials, 10, 2100993(2021).

    [63] Liu M H, Zhang Z, Yang Y C et al. Polymethine-based semiconducting polymer dots with narrow-band emission and absorption/emission maxima at NIR-II for bioimaging[J]. Angewandte Chemie International Edition, 60, 983-989(2021).

    [64] Yang Y Q, Fan X X, Li L et al. Semiconducting polymer nanoparticles as theranostic system for near-infrared-II fluorescence imaging and photothermal therapy under safe laser fluence[J]. ACS Nano, 14, 2509-2521(2020).

    [65] Lu X M, Yuan P C, Zhang W S et al. A highly water-soluble triblock conjugated polymer for in vivo NIR-II imaging and photothermal therapy of cancer[J]. Polymer Chemistry, 9, 3118-3126(2018).

    [66] Zhang W S, Deng W X, Zhang H et al. Bioorthogonal-targeted 1064 nm excitation theranostic nanoplatform for precise NIR-IIa fluorescence imaging guided efficient NIR-II photothermal therapy[J]. Biomaterials, 243, 119934(2020).

    [67] Sun P F, Jiang X Y, Sun B et al. Electron-acceptor density adjustments for preparation conjugated polymers with NIR-II absorption and brighter NIR-II fluorescence and 1064 nm active photothermal/gas therapy[J]. Biomaterials, 280, 121319(2022).

    [68] Song X W, Lu X M, Sun B et al. Conjugated polymer nanoparticles with absorption beyond 1000 nm for NIR-II fluorescence imaging system guided NIR-II photothermal therapy[J]. ACS Applied Polymer Materials, 2, 4171-4179(2020).

    [69] Zhang Z, Fang X F, Liu Z H et al. Semiconducting polymer dots with dual-enhanced NIR-IIa fluorescence for through-skull mouse-brain imaging[J]. Angewandte Chemie (International Ed. in English), 59, 3691-3698(2020).

    [70] Liu Y, Liu J F, Chen D D et al. Fluorination enhances NIR-II fluorescence of polymer dots for quantitative brain tumor imaging[J]. Angewandte Chemie (International Ed. in English), 59, 21049-21057(2020).

    [71] Chen D D, Liu Y, Zhang Z et al. NIR-II fluorescence imaging reveals bone marrow retention of small polymer nanoparticles[J]. Nano Letters, 21, 798-805(2021).

    [72] Michalet X, Pinaud F F, Bentolila L A et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 307, 538-544(2005).

    [73] Lu H P, Carroll G M, Neale N R et al. Infrared quantum dots: progress, challenges, and opportunities[J]. ACS Nano, 13, 939-953(2019).

    [74] Lian W, Tu D T, Hu P et al. Broadband excitable NIR-II luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells[J]. Nano Today, 35, 100943(2020).

    [75] Zebibula A, Alifu N, Xia L Q et al. Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging[J]. Advanced Functional Materials, 28, 1703451(2018).

    [76] Zhang M X, Yue J Y, Cui R et al. Bright quantum dots emitting at ∼1, 600 nm in the NIR-IIb window for deep tissue fluorescence imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 6590-6595(2018).

    [77] He H, Lin Y, Tian Z Q et al. Ultrasmall Pb∶Ag2S quantum dots with uniform particle size and bright tunable fluorescence in the NIR-II window[J]. Small, 14, e1703296(2018).

    [78] Zhang J J, Lin Y, Zhou H et al. Cell membrane-camouflaged NIR II fluorescent Ag2Te quantum dots-based nanobioprobes for enhanced in vivo homotypic tumor imaging[J]. Advanced Healthcare Materials, 8, e1900341(2019).

    [79] Zhu C N, Jiang P, Zhang Z L et al. Ag₂Se quantum dots with tunable emission in the second near-infrared window[J]. ACS Applied Materials & Interfaces, 5, 1186-1189(2013).

    [80] Chen L L, Zhao L, Wang Z G et al. Near-infrared-II quantum dots for in vivo imaging and cancer therapy[J]. Small, e2104567(2021).

    [81] Zhang M Y, Liu A N, Fu H H et al. Regulation of silver precursor reactivity via tertiary phosphine to synthesize near-infrared Ag2Te with photoluminescence quantum yield of up to 14.7%[J]. Chemistry of Materials, 33, 9524-9533(2021).

    [82] Li C Y, Zhang Y J, Wang M et al. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window[J]. Biomaterials, 35, 393-400(2014).

    [83] Li C Y, Li F, Zhang Y J et al. Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot[J]. ACS Nano, 9, 12255-12263(2015).

    [84] Zhang Y, Hong G S, Zhang Y J et al. Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window[J]. ACS Nano, 6, 3695-3702(2012).

    [85] Hong G S, Robinson J T, Zhang Y J et al. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region[J]. Angewandte Chemie (International Ed. in English), 51, 9818-9821(2012).

    [86] Yang H C, Li R F, Zhang Y J et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window[J]. Journal of the American Chemical Society, 143, 2601-2607(2021).

    [87] Yang H C, Huang H Y, Ma X et al. Au-doped Ag2Te quantum dots with bright NIR-IIb fluorescence for in situ monitoring of angiogenesis and arteriogenesis in a hindlimb ischemic model[J]. Advanced Materials, 33, e2103953(2021).

    [88] Bruns O T, Bischof T S, Harris D K et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots[J]. Nature Biomedical Engineering, 1, 56(2017).

    [89] Franke D, Harris D K, Chen O et al. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared[J]. Nature Communications, 7, 12749(2016).

    [90] Zhong Y T, Dai H J. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems[J]. Nano Research, 13, 1281-1294(2020).

    [91] Fan Y, Zhang F. A new generation of NIR-II probes: lanthanide-based nanocrystals for bioimaging and biosensing[J]. Advanced Optical Materials, 7, 1801417(2019).

    [92] Naczynski D J, Tan M C, Zevon M et al. Rare-earth-doped biological composites as in vivo shortwave infrared reporters[J]. Nature Communications, 4, 2199(2013).

    [93] Zhong Y T, Ma Z R, Zhu S J et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm[J]. Nature Communications, 8, 737(2017).

    [94] Liu Z, Yun B, Han Y et al. Dye-sensitized rare earth nanoparticles with up/down conversion luminescence for on-demand gas therapy of glioblastoma guided by NIR-II fluorescence imaging[J]. Advanced Healthcare Materials, e2102042(2021).

    [95] Liu Z, Ren F, Zhang H et al. Boosting often overlooked long wavelength emissions of rare-earth nanoparticles for NIR-II fluorescence imaging of orthotopic glioblastoma[J]. Biomaterials, 219, 119364(2019).

    [96] Wang C L, Lin H X, Ge X G et al. Dye-sensitized downconversion nanoprobes with emission beyond 1500 nm for ratiometric visualization of cancer redox state[J]. Advanced Functional Materials, 31, 2009942(2021).

    [97] Wang Q, Liang T, Wu J et al. Dye-sensitized rare earth-doped nanoparticles with boosted NIR-IIb emission for dynamic imaging of vascular network-related disorders[J]. ACS Applied Materials & Interfaces, 13, 29303-29312(2021).

    [98] Shao W, Chen G Y, Kuzmin A et al. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window[J]. Journal of the American Chemical Society, 138, 16192-16195(2016).

    [99] Xue Z L, Zeng S J, Hao J H. Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm[J]. Biomaterials, 171, 153-163(2018).

    [100] Li Y B, Zeng S J, Hao J H. Non-invasive optical guided tumor metastasis/vessel imaging by using lanthanide nanoprobe with enhanced down-shifting emission beyond 1500 nm[J]. ACS Nano, 13, 248-259(2019).

    [101] Li Y B, Li X L, Xue Z L et al. Second near-infrared emissive lanthanide complex for fast renal-clearable in vivo optical bioimaging and tiny tumor detection[J]. Biomaterials, 169, 35-44(2018).

    [102] Wang W, Feng Z, Li B et al. Er3+ self-sensitized nanoprobes with enhanced 1525 nm downshifting emission for NIR-IIb in vivo bio-imaging[J]. Journal of Materials Chemistry. B, 9, 2899-2908(2021).

    [103] He S Q, Chen S, Li D F et al. High affinity to skeleton rare earth doped nanoparticles for near-infrared II imaging[J]. Nano Letters, 19, 2985-2992(2019).

    [104] Li D F, He S Q, Wu Y F et al. Excretable lanthanide nanoparticle for biomedical imaging and surgical navigation in the second near-infrared window[J]. Advanced Science, 6, 1902042(2019).

    [105] Zhang H X, Fan Y, Pei P et al. Tm3+-sensitized NIR-II fluorescent nanocrystals for in vivo information storage and decoding[J]. Angewandte Chemie (International Ed. in English), 58, 10153-10157(2019).

    [106] Wang S F, Liu L, Fan Y et al. In vivo high-resolution ratiometric fluorescence imaging of inflammation using NIR-II nanoprobes with 1550 nm emission[J]. Nano Letters, 19, 2418-2427(2019).

    [107] Wang P Y, Fan Y, Lu L F et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer[J]. Nature Communications, 9, 2898(2018).

    [108] Fan Y, Wang P Y, Lu Y Q et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging[J]. Nature Nanotechnology, 13, 941-946(2018).

    [109] Pei P, Hu H X, Chen Y et al. NIR-II ratiometric lanthanide-dye hybrid nanoprobes doped bioscaffolds for in situ bone repair monitoring[J]. Nano Letters, 1-9(2022).

    [110] Pei P, Chen Y, Sun C X et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging[J]. Nature Nanotechnology, 16, 1011-1018(2021).

    [111] Liu H L, Hong G S, Luo Z T et al. Atomic-precision gold clusters for NIR-II imaging[J]. Advanced Materials, 31, e1901015(2019).

    [112] Liu S J, Chen C, Li Y Y et al. Constitutional isomerization enables bright NIR-II AIEgen for brain-inflammation imaging[J]. Advanced Functional Materials, 30, 1908125(2020).

    [113] Wan H, Yue J Y, Zhu S J et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues[J]. Nature Communications, 9, 1171(2018).

    [114] Qi J, Alifu N, Zebibula A et al. Highly stable and bright AIE dots for NIR-II deciphering of living rats[J]. Nano Today, 34, 100893(2020).

    [115] Fan X X, Xia Q M, Zhang Y Y et al. Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD)[J]. Advanced Healthcare Materials, 10, e2101043(2021).

    [116] Wang F F, Wan H, Ma Z R et al. Light-sheet microscopy in the near-infrared II window[J]. Nature Methods, 16, 545-552(2019).

    [117] Wang F F, Ma Z R, Zhong Y T et al. In vivo NIR-II structured-illumination light-sheet microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2023888118(2021).

    [118] Yu W B, Guo B, Zhang H Q et al. NIR-II fluorescence in vivo confocal microscopy with aggregation-induced emission dots[J]. Science Bulletin, 64, 410-416(2019).

    [119] Zhu S J, Herraiz S, Yue J Y et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates[J]. Advanced Materials, 30, e1705799(2018).

    [120] Cai Z C, Zhu L, Wang M Q et al. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates[J]. Theranostics, 10, 4265-4276(2020).

    [121] Zhang H Q, Xie W S, Chen M et al. Aggregation-induced emission nanoparticles for in vivo three-photon fluorescence microscopic rat brain angiography[J]. Journal of Innovative Optical Health Sciences, 12, 1950012(2019).

    [122] Wang Y L, Chen M, Alifu N et al. Aggregation-induced emission luminogen with deep-red emission for through-skull three-photon fluorescence imaging of mouse[J]. ACS Nano, 11, 10452-10461(2017).

    [123] Ni H W, Xu Z C, Li D Y et al. Aggregation-induced emission luminogen for in vivo three-photon fluorescence lifetime microscopic imaging[J]. Journal of Innovative Optical Health Sciences, 12, 1940005(2019).

    [124] Shi L Y, Sordillo L A, Rodríguez-Contreras A et al. Transmission in near-infrared optical windows for deep brain imaging[J]. Journal of Biophotonics, 9, 38-43(2016).

    [125] Ni H W, Wang Y L, Tang T et al. Quantum dots assisted in vivo two-photon microscopy with NIR-II emission[J]. Photonics Research, 10, 189-196(2021).

    [126] Hao X X, Li C Y, Zhang Y J et al. Programmable chemotherapy and immunotherapy against breast cancer guided by multiplexed fluorescence imaging in the second near-infrared window[J]. Advanced Materials, 30, e1804437(2018).

    [127] Yu G T, Luo M Y, Li H et al. Molecular targeting nanoprobes with non-overlap emission in the second near-infrared window for in vivo two-color colocalization of immune cells[J]. ACS Nano, 13, 12830-12839(2019).

    [128] Jia Q, Ma L Y, Zhai X J et al. Orthogonal near-infrared-II imaging enables spatially distinguishing tissues based on lanthanide-doped nanoprobes[J]. Analytical Chemistry, 92, 14762-14768(2020).

    [129] Cosco E D, Spearman A L, Ramakrishnan S et al. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time[J]. Nature Chemistry, 12, 1123-1130(2020).

    [130] Cosco E D, Arús B A, Spearman A L et al. Bright chromenylium polymethine dyes enable fast, four-color in vivo imaging with shortwave infrared detection[J]. Journal of the American Chemical Society, 143, 6836-6846(2021).

    [131] Tian R, Ma H L, Zhu S J et al. Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery[J]. Advanced Materials, 32, e1907365(2020).

    [132] Fan X X, Li Y R, Feng Z et al. Nanoprobes-assisted multichannel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes[J]. Advanced Science, 8, 2003972(2021).

    [133] Wang S F, Fan Y, Li D D et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing[J]. Nature Communications, 10, 1058(2019).

    [134] Zhao M Y, Wang J B, Lei Z H et al. NIR-II pH sensor with a FRET adjustable transition point for in situ dynamic tumor microenvironment visualization[J]. Angewandte Chemie (International Ed. in English), 60, 5091-5095(2021).

    [135] Liao N S, Su L C, Zheng Y S et al. In vivo tracking of cell viability for adoptive natural killer cell-based immunotherapy by ratiometric NIR-II fluorescence imaging[J]. Angewandte Chemie (International Ed. in English), 60, 20888-20896(2021).

    [136] Ge X G, Lou Y H, Su L C et al. Single wavelength laser excitation ratiometric NIR-II fluorescent probe for molecule imaging in vivo[J]. Analytical Chemistry, 92, 6111-6120(2020).

    [137] Deng Z M, Bi S H, Jiang M Y et al. Endogenous H2S-activated orthogonal second near-infrared emissive nanoprobe for in situ ratiometric fluorescence imaging of metformin-induced liver injury[J]. ACS Nano, 15, 3201-3211(2021).

    [138] Wang C L, Niu M, Wang W et al. In situ activatable ratiometric NIR-II fluorescence nanoprobe for quantitative detection of H2S in colon cancer[J]. Analytical Chemistry, 93, 9356-9363(2021).

    [139] Zhu X Y, Liu X, Zhang H X et al. High-fidelity NIR-II multiplexed lifetime bioimaging with bright double interfaced lanthanide nanoparticles[J]. Angewandte Chemie (International Ed. in English), 60, 23545-23551(2021).

    [140] Yu J, Zhang R L, Gao Y F et al. Intravital confocal fluorescence lifetime imaging microscopy in the second near-infrared window[J]. Optics Letters, 45, 3305-3308(2020).

    [141] Guo B, Feng Z, Hu D H et al. Precise deciphering of brain vasculatures and microscopic tumors with dual NIR-II fluorescence and photoacoustic imaging[J]. Advanced Materials, 31, e1902504(2019).

    [142] Wang Q, Dai Y N, Xu J Z et al. All-in-one phototheranostics: single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy[J]. Advanced Functional Materials, 29, 1901480(2019).

    [143] Ren Y, He S Q, Huttad L et al. An NIR-II/MR dual modal nanoprobe for liver cancer imaging[J]. Nanoscale, 12, 11510-11517(2020).

    [144] Wang X D, Shi J P, Li P H et al. LuPO4: Nd3+ nanophosphors for dual-mode deep tissue NIR-II luminescence/CT imaging[J]. Journal of Luminescence, 209, 420-426(2019).

    [145] Dai Y, Yang D P, Yu D P et al. Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-II/CT dual imaging and photothermal therapy[J]. ACS Applied Materials & Interfaces, 9, 26674-26683(2017).

    [146] Huang D H, Lin S Y, Wang Q W et al. An NIR-II fluorescence/dual bioluminescence multiplexed imaging for in vivo visualizing the location, survival, and differentiation of transplanted stem cells[J]. Advanced Functional Materials, 29, 1806546(2019).

    [147] Alifu N, Zebibula A, Qi J et al. Single-molecular near-infrared-II theranostic systems: ultrastable aggregation-induced emission nanoparticles for long-term tracing and efficient photothermal therapy[J]. ACS Nano, 12, 11282-11293(2018).

    [148] Li Y R, Fan X X, Li Y Y et al. Biologically excretable AIE nanoparticles wear tumor cell-derived “exosome caps” for efficient NIR-II fluorescence imaging-guided photothermal therapy[J]. Nano Today, 41, 101333(2021).

    [149] Zhang Z J, Xu W H, Kang M M et al. An all-round athlete on the track of phototheranostics: subtly regulating the balance between radiative and nonradiative decays for multimodal imaging-guided synergistic therapy[J]. Advanced Materials, 32, e2003210(2020).

    [150] Li L Q, Shao C, Liu T et al. An NIR-II-emissive photosensitizer for hypoxia-tolerant photodynamic theranostics[J]. Advanced Materials, 32, e2003471(2020).

    [151] Liu Q, Tian J W, Tian Y et al. Near-infrared-II nanoparticles for cancer imaging of immune checkpoint programmed death-ligand 1 and photodynamic/immune therapy[J]. ACS Nano, 15, 515-525(2021).

    [152] Hu Z H, Fang C, Li B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows[J]. Nature Biomedical Engineering, 4, 259-271(2020).

    [153] Zhan Y, Ling S S, Huang H Y et al. Rapid unperturbed-tissue analysis for intraoperative cancer diagnosis using an enzyme-activated NIR-II nanoprobe[J]. Angewandte Chemie (International Ed. in English), 60, 2637-2642(2021).

    [154] Li Y, Lin J Y, Wang P Y et al. Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy[J]. ACS Nano, 13, 12912-12928(2019).

    [155] Li L, Yang Z, Zhu S J et al. A rationally designed semiconducting polymer brush for NIR-II imaging-guided light-triggered remote control of CRISPR/Cas9 genome editing[J]. Advanced Materials, 31, e1901187(2019).

    Zhe Feng, Jun Qian. Advances on in vivo Fluorescence Bioimaging in the Second Near-Infrared Window[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617001
    Download Citation