• Microelectronics
  • Vol. 51, Issue 3, 374 (2021)
CAO Fuyuan1、2, LIU Yang1, and HUO Zongliang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.210005 Cite this Article
    CAO Fuyuan, LIU Yang, HUO Zongliang. Review of Error Mitigation Techniques in NAND Flash Memorys[J]. Microelectronics, 2021, 51(3): 374 Copy Citation Text show less
    References

    [2] MONZIO COMPAGNONI C, GODA A, SPINELLI A S, et al. Reviewing the evolution of the NAND flash of the NAND flash technology [J]. Proceed IEEE, 2017, 105(9): 1609-1633.

    [3] YAMADA S, HIURA Y, YAMANE T, et al. Degradation mechanism of flash EEPROM programming after program/erase cycles [C] // Proceed IEEE IEDM. Washington D C, USA. 1993: 23-26.

    [4] Failure mechanisms and models for semiconductor devices: JEP122H [S]. JEDEC Solid State Technology Association, 2016.

    [5] DIRIK C, JACOB B. The performance of PC solid-state disks (SSDs) as a function of bandwidth, concurrency, device architecture, and system organization [C] // Proceed 36th ISCA. Austin, TX, USA. 2009: 279-289.

    [6] GRUPP L M, CAULFIELD A M, COBURN J, et al. Characterizing flash memory: anomalies, observations, and applications [C] // IEEE/ACM Int Symp Microarchitecture. New York, NY, USA. 2009: 24-33.

    [7] CAI Y, MUTLU O, HARATSCH E F, et al. Program interference in MLC NAND flash memory: characterization, modeling, and mitigation [C] // IEEE 31st ICCD. Asheville. NC, USA. 2013: 123-130.

    [8] PAPANDREOU N, PARNELL T, POZIDIS H, et al. Using adaptive read voltage thresholds to enhance the reliability of MLC NAND flash memory systems [C] // Proceed 24th GLSVLSI. Houston, TX, USA. 2014: 151-156.

    [9] CAI Y, LUO Y X, GHOSE S, et al. Read disturb errors in MLC NAND flash memory: characterization, mitigation, and recovery [C] // 45th IEEE/IFIP Int Conf DSN. Rio de Janeiro, Brazil. 2015: 438-449.

    [10] JEONG J, HAHN S S, LEE S, et al. Lifetime improvement of NAND flash-based storage systems using dynamic program and erase scaling [C] // Proceed 12th USENIX Conf File Storage Tech. Santa Clara, CA, USA. 2014: 61-74.

    [11] LIU J, JAIYEN B, VERAS R, et al. RAIDR: retention-aware intelligent DRAM refresh [J]. Computer Architecture News, 2012, 40(3): 1-12.

    [12] CAI Y, YALCIN G, MUTLU O, et al. Error analysis and retention-aware error management for Nand flash memory [J]. Intel Tech J, 2013, 17(1): 140-164.

    [13] HA K, JEONG J, KIM J. An integrated approach for managing read disturbs in high-density NAND flash memory [J]. IEEE Trans Comput-Aided Design Integr Circ Syst, 2016, 35(7): 1079-1091.

    [14] LUO Y, CAI Y, GHOSE S, et al. WARM: improving NAND flash memory lifetime with write-hotness aware retention management [C] // 31st Symp MSST. Santa Clara, CA, USA. 2015: 1-14.

    [15] WANG C, WONG W F. Extending the lifetime of NAND flash memory by salvaging bad blocks [C] // DATE. Dresden, Germany. 2012: 260-263.

    [16] WATANABE H, DEGUCHI Y, KOBAYASHI A, et al. System-level read disturb suppression techniques of TLC NAND flash memories for read-hot/cold data mixed applications [J]. Sol Sta Elec, 2018, 147(9): 63-77.

    [17] TANAKAMARU S, YANAGIHARA Y, TAKEUCHI K. Error-prediction LDPC and error-recovery schemes for highly reliable solid-state drives (SSDs) [J]. IEEE J Sol Sta Circ, 2013, 48(11): 2920-2933.

    [18] MA H Z, PAN L Y, SONG C L, et al. Word line program disturbance based data retention error recovery strategy for MLC NAND flash [J]. Sol Sta Elec, 2015, 109(7): 1-7.

    CAO Fuyuan, LIU Yang, HUO Zongliang. Review of Error Mitigation Techniques in NAND Flash Memorys[J]. Microelectronics, 2021, 51(3): 374
    Download Citation