• Laser & Optoelectronics Progress
  • Vol. 59, Issue 5, 0523003 (2022)
Jing Zhang1, Wenrui Xue1、*, Chen Zhang1, Yuting Chen1, and Changyong Li2、3
Author Affiliations
  • 1College of Physics and Electronic Engineering, Shanxi University, Taiyuan , Shanxi 030006, China
  • 2Key Laboratory of Quantum Optics and Photonic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan , Shanxi 030006, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan , Shanxi 030006, China
  • show less
    DOI: 10.3788/LOP202259.0523003 Cite this Article Set citation alerts
    Jing Zhang, Wenrui Xue, Chen Zhang, Yuting Chen, Changyong Li. Grating-Type Ultraviolet Absorber Based on Bi1.5Sb0.5Te1.8Se1.2 Materials[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0523003 Copy Citation Text show less
    References

    [1] Cui Y X, He Y R, Jin Y et al. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 8, 495-520(2014).

    [2] Liu N, Mesch M, Weiss T et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 10, 2342-2348(2010).

    [3] Chong T K, Wilson J, Mokkapati S et al. Optimal wavelength scale diffraction gratings for light trapping in solar cells[J]. Journal of Optics, 14, 024012(2012).

    [4] Hägglund C, Zeltzer G, Ruiz R et al. Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics[J]. ACS Photonics, 3, 456-463(2016).

    [5] Zhang B X, Zhao Y H, Hao Q Z et al. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array[J]. Optics Express, 19, 15221-15228(2011).

    [6] Huang Y J, Liu L, Pu M B et al. A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum[J]. Nanoscale, 10, 8298-8303(2018).

    [7] Chen M J, He Y R. Plasmonic nanostructures for broadband solar absorption based on the intrinsic absorption of metals[J]. Solar Energy Materials and Solar Cells, 188, 156-163(2018).

    [8] Li J K, Chen X F, Yi Z et al. Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays[J]. Materials Today Energy, 16, 100390(2020).

    [9] Che Z X, Tian C H, Chen X L et al. Design of a broadband infrared metamaterial absorber[J]. Optik, 170, 535-539(2018).

    [10] Ye Y Q, Jin Y, He S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime[J]. Journal of the Optical Society of America B, 27, 498-504(2010).

    [11] Shu S W, Li Z, Li Y Y. Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime[J]. Optics Express, 21, 25307-25315(2013).

    [12] Cen C L, Zhang Y B, Chen X F et al. A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency[J]. Physica E: Low-Dimensional Systems and Nanostructures, 117, 113840(2020).

    [13] Liu Y B, Qiu J, Zhao J M et al. General design method of ultra-broadband perfect absorbers based on magnetic polaritons[J]. Optics Express, 25, A980-A989(2017).

    [14] Wang Y, Xuan X F, Zhu L et al. Multilayer rectangular broadband metamaterial absorber[J]. Acta Optica Sinica, 40, 1523001(2020).

    [15] Zhang C, Xue W R, Chen Y F et al. Ultra-broadband solar absorber based on titanium nitride and titanium dioxide[J]. Acta Optica Sinica, 40, 2124002(2020).

    [16] Wu T S, Wang X Y, Zhang H X et al. Ultra-broadband perfect absorber based on multilayered Zr/SiO2 film[J]. Acta Optica Sinica, 41, 0516001(2021).

    [17] Tang X W, Feng Q L, Wang J X et al. Clustering based on multiple biological information: approach for predicting protein complexes[J]. IET Systems Biology, 7, 223-230(2013).

    [18] Dang V Q, Trung T Q, Kim D I et al. Ultrahigh responsivity in graphene-ZnO nanorod hybrid UV photodetector[J]. Small, 11, 3054-3065(2015).

    [19] Honda M, Kumamoto Y, Taguchi A et al. Plasmon-enhanced UV photocatalysis[J]. Applied Physics Letters, 104, 061108(2014).

    [20] Liang Q Q, Yu W X, Zhao W C et al. Numerical study of the meta-nanopyramid array as efficient solar energy absorber[J]. Optical Materials Express, 3, 1187-1196(2013).

    [21] Shi J X, Zhang W C, Xu W et al. A polarization-insensitive broadband metamaterial absorber at the optical regime[J]. Chinese Physics Letters, 32, 094204(2015).

    [22] Lei J G, Ji B Y, Lin J Q. A high-performance light absorber based on a metamaterial nanopyramid array[J]. Chinese Journal of Physics, 54, 940-946(2016).

    [23] Wu T, Lai J J, Wang S W et al. UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths[J]. Applied Optics, 56, 5844-5848(2017).

    [24] Liu Z Q, Liu G Q, Huang Z P et al. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface[J]. Solar Energy Materials and Solar Cells, 179, 346-352(2018).

    [25] Sun D W, Li C H, Yi L J et al. High absorption broadband solar energy absorber based on two-dimensional photonic crystal[J]. Acta Optica Sinica, 41, 0516002(2021).

    [26] Tang C S, Xia B, Zou X Q et al. Terahertz conductivity of topological surface states in Bi₁.₅Sb₀.₅Te₁.₈Se₁.₂[J]. Scientific Reports, 3, 3513(2013).

    [27] Ou J Y, So J K, Adamo G et al. Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2[J]. Nature Communications, 5, 5139(2014).

    [28] Dubrovkin A M, Adamo G, Yin J et al. Visible range plasmonic modes on topological insulator nanostructures[J]. Advanced Optical Materials, 5, 1600768(2017).

    [29] Palik E D[M]. Handbook of optical constants of solids(1985).

    Jing Zhang, Wenrui Xue, Chen Zhang, Yuting Chen, Changyong Li. Grating-Type Ultraviolet Absorber Based on Bi1.5Sb0.5Te1.8Se1.2 Materials[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0523003
    Download Citation