• Advanced Photonics
  • Vol. 5, Issue 4, 046004 (2023)
Maoliang Wei1、†, Junying Li1, Zequn Chen2、3, Bo Tang4, Zhiqi Jia1, Peng Zhang4, Kunhao Lei1, Kai Xu1, Jianghong Wu2、3, Chuyu Zhong1, Hui Ma1, Yuting Ye2、3, Jialing Jian2、3, Chunlei Sun2、3, Ruonan Liu4, Ying Sun1, Wei. E. I. Sha1, Xiaoyong Hu5, Jianyi Yang1, Lan Li2、3, and Hongtao Lin1、*
Author Affiliations
  • 1Zhejiang University, College of Information Science and Electronic Engineering, State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Micro-Nano Electronics and Smart System of Zhejiang Province, Hangzhou, China
  • 2Westlake University, School of Engineering, Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Hangzhou, China
  • 3Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
  • 4Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China
  • 5Peking University, School of Physics, Frontiers Science Center for Nano-optoelectronics, State Key Laboratory for Mesoscopic Physics, Beijing, China
  • show less
    DOI: 10.1117/1.AP.5.4.046004 Cite this Article Set citation alerts
    Maoliang Wei, Junying Li, Zequn Chen, Bo Tang, Zhiqi Jia, Peng Zhang, Kunhao Lei, Kai Xu, Jianghong Wu, Chuyu Zhong, Hui Ma, Yuting Ye, Jialing Jian, Chunlei Sun, Ruonan Liu, Ying Sun, Wei. E. I. Sha, Xiaoyong Hu, Jianyi Yang, Lan Li, Hongtao Lin. Electrically programmable phase-change photonic memory for optical neural networks with nanoseconds in situ training capability[J]. Advanced Photonics, 2023, 5(4): 046004 Copy Citation Text show less
    References

    [1] C. Zhang, P. Patras, H. Haddadi. Deep learning in mobile and wireless networking: a survey. IEEE Commun. Surv. Tutor., 21, 2224-2287(2019).

    [2] L. Chen et al. Deep neural network based vehicle and pedestrian detection for autonomous driving: a survey. IEEE Trans. Intell. Transp. Syst., 22, 3234-3246(2021).

    [3] J. Chai et al. Deep learning in computer vision: a critical review of emerging techniques and application scenarios. Mach. Learn. Appl., 6, 100134(2021).

    [4] P. Xu, Z. Zhou. Silicon-based optoelectronics for general-purpose matrix computation: a review. Adv. Photonics, 4, 044001(2022).

    [5] H. Zhou et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl., 11, 30(2022).

    [6] B. J. Shastri et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [7] C. Li et al. The challenges of modern computing and new opportunities for optics. PhotoniX, 2, 20(2021).

    [8] J. Liu et al. Research progress in optical neural networks: theory, applications and developments. PhotoniX, 2, 5(2021).

    [9] X. Xu et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [10] T. J. Seok et al. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3, 64-70(2016).

    [11] W. Bogaerts et al. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [12] S. Y. Siew et al. Review of silicon photonics technology and platform development. J. Lightwave Technol., 39, 4374-4389(2021).

    [13] H. Shu et al. Microcomb-driven silicon photonic systems. Nature, 605, 457-463(2022).

    [14] S. Bandyopadhyay et al. Single chip photonic deep neural network with accelerated training(2022).

    [15] S. Pai et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science, 380, 398-404(2023).

    [16] H. Zhang et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun., 12, 457(2021).

    [17] J. Y. S. Tan et al. Monadic Pavlovian associative learning in a backpropagation-free photonic network. Optica, 9, 792-802(2022).

    [18] J. Feldmann et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [19] F. Ashtiani, A. J. Geers, F. Aflatouni. An on-chip photonic deep neural network for image classification. Nature, 606, 501-506(2022).

    [20] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [21] Z. G. Cheng et al. On-chip photonic synapse. Sci. Adv., 3, e1700160(2017).

    [22] P. Edinger et al. Silicon photonic microelectromechanical phase shifters for scalable programmable photonics. Opt. Lett., 46, 5671-5674(2021).

    [23] D. Pérez, I. Gasulla, J. Capmany. Programmable multifunctional integrated nanophotonics. Nanophotonics, 7, 1351-1371(2018).

    [24] K. Shportko et al. Resonant bonding in crystalline phase-change materials. Nat. Mater., 7, 653-658(2008).

    [25] A.-K. U. Michel et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett., 13, 3470-3475(2013).

    [26] L. Mao et al. Reversible switching of electromagnetically induced transparency in phase change metasurfaces. Adv. Photonics, 2, 056004(2020).

    [27] M. Wuttig, N. Yamada. Phase-change materials for rewriteable data storage. Nat. Mater., 6, 824-832(2007).

    [28] J.-F. Song et al. Integrated photonics with programmable non-volatile memory. Sci. Rep., 6, 22616(2016).

    [29] J. Geler-Kremer et al. A ferroelectric multilevel non-volatile photonic phase shifter. Nat. Photonics, 16, 491-497(2022).

    [30] S. Abe, K. Hane. A silicon microring resonator with a nanolatch mechanism. Microsyst. Technol., 21, 2019-2024(2015).

    [31] J. Zheng et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater., 32, 2001218(2020).

    [32] C. Ríos et al. In-memory computing on a photonic platform. Sci. Adv., 5, eaau5759(2019).

    [33] D. Wu et al. Resonant multilevel optical switching with phase change material GST. Nanophotonics, 11, 3437-3446(2022).

    [34] N. Farmakidis et al. Electronically reconfigurable photonic switches incorporating plasmonic structures and phase change materials. Adv. Sci., 9, 2200383(2022).

    [35] C. Wu et al. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photonics, 6, 87-92(2019).

    [36] H. Zhang et al. Miniature multilevel optical memristive switch using phase change material. ACS Photonics, 6, 2205-2212(2019).

    [37] Y. Zhang et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun., 10, 4279(2019).

    [38] Z. Fang et al. Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material. Adv. Opt. Mater., 9, 2002049(2021).

    [39] Z. Fang et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat. Nanotechnol., 17, 842-848(2022).

    [40] C. Ríos et al. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials. PhotoniX, 3, 26(2022).

    [41] J. Feldmann et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).

    [42] X. Ma et al. Photonic tensor core with photonic compute-in-memory, 1-3(2022).

    [43] T. W. Hughes et al. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica, 5, 864-871(2018).

    [44] H. Zhou et al. All-in-one silicon photonic polarization processor. Nanophotonics, 8, 2257-2267(2019).

    [45] H. Zhou et al. Chip-scale optical matrix computation for PageRank algorithm. IEEE J. Sel. Top. Quantum Electron., 26, 8300910(2020).

    [46] S. M. Buckley et al. Photonic online learning: a perspective. Nanophotonics, 12, 833-845(2023).

    [47] S. Xu, J. Wang, W. Zou. Optical convolutional neural network with WDM-based optical patching and microring weighting banks. IEEE Photonics Technol. Lett., 33, 89-92(2021).

    [48] F. Brückerhoff-Plückelmann et al. Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers. Nanophotonics, 11, 4063-4072(2022).

    [49] B. Bai et al. Microcomb-based integrated photonic processing unit. Nat. Commun., 14, 66(2023).

    [50] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 4, 495-497(2010).

    [51] M. Nedeljkovic, R. Soref, G. Z. Mashanovich. Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14 μm infrared wavelength range. IEEE Photonics J., 3, 1171-1180(2011). https://doi.org/10.1109/JPHOT.2011.2171930

    [52] K. Lei et al. Magnetron-sputtered and thermal-evaporated low-loss Sb-Se phase-change films in non-volatile integrated photonics. Opt. Mater. Express, 12, 2815-2823(2022).

    [53] Y. Zhang et al. Myths and truths about optical phase change materials: a perspective. Appl. Phys. Lett., 118, 210501(2021).

    [54] H. Ballan, M. Declercq. High Voltage Devices and Circuits in Standard CMOS Technologies, 268-269(2013).

    [55] C. Zhong et al. Fast thermo-optical modulators with doped-silicon heaters operating at 2  μm. Opt. Express, 29, 23508-23516(2021). https://doi.org/10.1364/OE.430756

    [56] M. Wei et al. TDFA-band silicon optical variable attenuator. Prog. Electromagn. Res., 174, 33-42(2022).

    [57] S. Liu et al. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review. Front. Optoelectron., 15, 9(2022).

    [58] J. R. Erickson et al. Designing fast and efficient electrically driven phase change photonics using foundry compatible waveguide-integrated microheaters. Opt. Express, 30, 13673-13689(2022).

    [59] H. Ma et al. Passive devices at 2  μm wavelength on 200 mm CMOS-compatible silicon photonics platform [Invited]. Chin. Opt. Lett., 19, 071301(2021). https://doi.org/10.3788/COL202119.071301

    Maoliang Wei, Junying Li, Zequn Chen, Bo Tang, Zhiqi Jia, Peng Zhang, Kunhao Lei, Kai Xu, Jianghong Wu, Chuyu Zhong, Hui Ma, Yuting Ye, Jialing Jian, Chunlei Sun, Ruonan Liu, Ying Sun, Wei. E. I. Sha, Xiaoyong Hu, Jianyi Yang, Lan Li, Hongtao Lin. Electrically programmable phase-change photonic memory for optical neural networks with nanoseconds in situ training capability[J]. Advanced Photonics, 2023, 5(4): 046004
    Download Citation