• Journal of Semiconductors
  • Vol. 43, Issue 12, 122801 (2022)
Guang Yang1、2、3, Hao Luo2、3, Jiajun Li2、3, Qinqin Shao2、3, Yazhe Wang2、3, Ruzhong Zhu2、3, Xi Zhang2、3, Lihui Song2、3, Yiqiang Zhang4, Lingbo Xu1, Can Cui1、*, Xiaodong Pi2、3, Deren Yang2、3、**, and Rong Wang2、3、***
Author Affiliations
  • 1Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • 2State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 3Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
  • 4School of Materials Science and Engineering & Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
  • show less
    DOI: 10.1088/1674-4926/43/12/122801 Cite this Article
    Guang Yang, Hao Luo, Jiajun Li, Qinqin Shao, Yazhe Wang, Ruzhong Zhu, Xi Zhang, Lihui Song, Yiqiang Zhang, Lingbo Xu, Can Cui, Xiaodong Pi, Deren Yang, Rong Wang. Discrimination of dislocations in 4H-SiC by inclination angles of molten-alkali etched pits[J]. Journal of Semiconductors, 2022, 43(12): 122801 Copy Citation Text show less
    References

    [1] J B Casady, R W Johnson. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid State Electron, 39, 1409(1996).

    [2] N G Wright, A B Horsfall, K Vassilevski. Prospects for SiC electronics and sensors. Mater Today, 11, 16(2008).

    [3] J Yoon, K Kim. A 3.3 kV 4H-SiC split gate MOSFET with a central implant region for superior trade-off between static and switching performance. J Semicond, 42, 062803(2021).

    [4] I G Yeo, W S Yang, J H Park et al. Two-inch a-plane (11-20) 6H-SiC crystal grown by using the PVT method from a small rectangular substrate. J Korean Phy Soc, 58, 1541(2011).

    [5] X She, A Q Huang, Ó Lucía et al. Review of silicon carbide power devices and their applications. IEEE Trans Ind Electron, 64, 8193(2017).

    [6] X Wang, Y W Zhong, H B Pu et al. Investigation of lateral spreading current in the 4H-SiC Schottky barrier diode chip. J Semicond, 42, 112802(2021).

    [7] D M Lukin, C Dory, M A Guidry et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat Photonics, 14, 330(2020).

    [8] Bardeleben H J von, J L Cantin, A Csóré et al. NV centers in 3C, 4H, and 6H silicon carbide: A variable platform for solid-state qubits and nanosensors. Phys Rev B, 94, 121202(2016).

    [9] H B Banks, Ö O Soykal, R L Myers-Ward et al. Resonant optical spin initialization and readout of single silicon vacancies in 4H-SiC. Phys Rev Appl, 11, 024013(2019).

    [10] J F Wang, F F Yan, Q Li et al. Coherent control of nitrogen-vacancy center spins in silicon carbide at room temperature. Phys Rev Lett, 124, 223601(2020).

    [11] J F Wang, F F Yan, Q Li et al. Robust coherent control of solid-state spin qubits using anti-Stokes excitation. Nat Commun, 12, 3223(2021).

    [12] S Ha, M Benamara, M Skowronski et al. Core structure and properties of partial dislocations in silicon carbide p-i-n diodes. Appl Phys Lett, 83, 4957(2003).

    [13] M Abadier, R L Myers-Ward, N A Mahadik et al. Nucleation of in-grown stacking faults and dislocation half-loops in 4H-SiC epitaxy. J Appl Phys, 114, 123502(2013).

    [14] Q Wahab, A Ellison, A Henry et al. Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H-SiC Schottky diodes. Appl Phys Lett, 76, 2725(2000).

    [15] P G Neudeck, J A Powell. Performance limiting micropipe defects in silicon carbide wafers. IEEE Electron Device Lett, 15, 63(1994).

    [16] A Grekov, Q C Zhang, H Fatima et al. Effect of crystallographic defects on the reverse performance of 4H-SiC JBS diodes. Microelectron Reliab, 48, 1664(2008).

    [17] P G Neudeck, W Huang, M Dudley. Study of bulk and elementary screw dislocation assisted reverse breakdown in low-voltage (<250 V) 4H-SiC p+n junction diodes. I. DC properties. IEEE Trans Electron Devices, 46, 478(1999).

    [18] R E Stahlbush, M E Twigg, J J Sumakeris et al. Mechanisms of stacking fault growth in SiC PiN diodes. MRS Online Proc Libr, 815, 241(2004).

    [19] S Ha, H J Chung, N T Nuhfer et al. Dislocation nucleation in 4H silicon carbide epitaxy. J Cryst Growth, 262, 130(2004).

    [20] D Zhuang, J H Edgar. Wet etching of GaN, AlN, and SiC: a review. Mater Sci Eng R, 48, 1(2005).

    [21] K Christiansen, R Helbig. Anisotropic oxidation of 6H-SiC. J Appl Phys, 79, 3276(1996).

    [22] W Geng, G Yang, X Zhang et al. Identification of subsurface damages of 4H-SiC wafers by combining photo-chemical etching and molten-alkali etching. J Semicond, 43, 102801(2022).

    [23] R W Brander, A L Boughey. The etching of-silicon carbide. Br J Appl Phys, 18, 905(1967).

    [24] L Dong, L Zheng, X F Liu et al. Defect revelation and evaluation of 4H silicon carbide by optimized molten KOH etching method. Mater Sci Forum, 740, 243(2013).

    [25] J J Li, H Luo, G Yang et al. Nitrogen decoration of basal-plane dislocations in 4H-SiC. Phys Rev Appl, 17, 054011(2022).

    [26] M Katsuno, N Ohtani, J Takahashi et al. Mechanism of molten KOH etching of SiC single crystals: Comparative study with thermal oxidation. Jpn J Appl Phys, 38, 4661(1999).

    [27] S A Sakwe, R Müller, P J Wellmann. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC. J Cryst Growth, 289, 520(2006).

    [28] Y Z Yao, Y Ishikawa, Y Sugawara et al. Molten KOH etching with Na 2O 2additive for dislocation revelation in 4H-SiC epilayers and substrates. Jpn J Appl Phys, 50, 075502(2011).

    [29] D Siche, D Klimm, T Hölzel et al. Reproducible defect etching of SiC single crystals. J Cryst Growth, 270, 1(2004).

    [30] Y Yang, Z Z Chen. Defect characterization of SiC by wet etching process. J Synth Cryst, 37, 634(2008).

    [31] H Z Song, T S Sudarshan. Basal plane dislocation mitigation in SiC epitaxial growth by nondestructive substrate treatment. Cryst Growth Des, 12, 1703(2012).

    [32] H Luo, J J Li, G Yang et al. Electronic and optical properties of threading dislocations in n-type 4H-SiC. ACS Appl Electron Mater, 4, 1678(2022).

    [33] J Takahashi, M Kanaya, Y Fujiwara. Sublimation growth of SiC single crystalline ingots on faces perpendicular to the (0001) basal plane. J Cryst Growth, 135, 61(1994).

    [34] Y Gao, Z H Zhang, R Bondokov et al. The effect of doping concentration and conductivity type on preferential etching of 4H-SiC by molten KOH. MRS Online Proc Libr, 815, 6(2004).

    [35] Y Zhang, H Chen, D Z Liu et al. High efficient polishing of sliced 4H-SiC (0001) by molten KOH etching. Appl Surf Sci, 525, 146532(2020).

    [36] Y X Cui, X B Hu, X J Xie et al. Threading dislocation classification for 4H-SiC substrates using the KOH etching method. CrystEngComm, 20, 978(2018).

    [37] D Nakamura, S Yamaguchi, I Gunjishima et al. Topographic study of dislocation structure in hexagonal SiC single crystals with low dislocation density. J Cryst Growth, 304, 57(2007).

    [38] K Konishi, Y Nakamura, A Nagae et al. Direct observation and three dimensional structural analysis for threading mixed dislocation inducing current leakage in 4H-SiC IGBT. Jpn J Appl Phys, 59, 011001(2020).

    [39] Y Z Yao, Y Ishikawa, Y Sugawara et al. Correlation between etch pits formed by molten KOH+Na 2O 2 etching and dislocation types in heavily doped n +-4H-SiC studied by X-ray topography. J Cryst Growth, 364, 7(2013).

    [40] K Fukunaga, S D Jun, T Kimoto. Anisotropic etching of single crystalline SiC using molten KOH for SiC bulk micromachining. Micromachining and Microfabrication Process Technology XI(2006).

    [41] T Katsuno, Y Watanabe, F Hirokazu et al. New separation method of threading dislocations in 4H-SiC epitaxial layer by molten KOH etching. Mater Sci Forum, 679/680, 298(2011).

    Guang Yang, Hao Luo, Jiajun Li, Qinqin Shao, Yazhe Wang, Ruzhong Zhu, Xi Zhang, Lihui Song, Yiqiang Zhang, Lingbo Xu, Can Cui, Xiaodong Pi, Deren Yang, Rong Wang. Discrimination of dislocations in 4H-SiC by inclination angles of molten-alkali etched pits[J]. Journal of Semiconductors, 2022, 43(12): 122801
    Download Citation