• Acta Optica Sinica
  • Vol. 37, Issue 4, 412003 (2017)
Zhu Boer1、2、*, Wang Xiangzhao1、2, Li Sikun1、2, Meng Zejiang1、2, Zhang Heng1、2, Dai Fengzhao1、2, and Duan Lifeng3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0412003 Cite this Article Set citation alerts
    Zhu Boer, Wang Xiangzhao, Li Sikun, Meng Zejiang, Zhang Heng, Dai Fengzhao, Duan Lifeng. High-Order Aberration Measurement Method for Hyper-NA Lithographic Projection Lens[J]. Acta Optica Sinica, 2017, 37(4): 412003 Copy Citation Text show less
    References

    [1] Brunner T A. Impact of lens aberrations on optical lithography[J]. IBM J Res Develop, 1997, 41(1-2): 57-67.

    [2] Erdmann A, Arnz M. The impact of aberration averaging during step-and-scan on the photolithographic process[J]. Microelectron Eng, 1998, 41-42(2): 117-120.

    [3] Graeupner P, Garries R B, Goehnermeier A, et al. Impact of wavefront errors on low k1 processes at extremely high NA[C]. SPIE, 2003, 5040: 119-130.

    [4] Ma Mingying, Wang Xiangzhao, Wang Fan, et al. Novel method for measuring coma with fine overlay test marks[J]. Acta Optica Sinica, 2006, 26(7): 1037-1042.

    [5] de Boeij W P, Pieternella R, Bouchoms I, et al. Extending immersion lithography down to 1x nm production nodes[C]. SPIE, 2013, 8683: 86831L.

    [6] van der Laan H, Dierichs M, van Greevenroek H, et al. Aerial image measurement methods for fast aberration set-up and illumination pupil verification[C]. SPIE, 2001, 4346: 394-407.

    [7] Hagiwara T, Kondo N, Hiroshi I, et al. Development of aerial image based aberration measurement technique[C]. SPIE, 2005, 5754: 1659-1669.

    [8] Duan L F, Wang X Z, Bourov A Y, et al. In situ aberration measurement technique based on principal component analysis of aerial image[J]. Opt Express, 2011, 19(19): 18080-18090.

    [9] Xu D B, Wang X Z, Bu Y, et al. In situ aberration measurement technique based on multi-illumination settings and principal component analysis of aerial images[J]. Chinese Optics Letters, 2012, 10(12): 121202.

    [10] Zhu Boer, Wang Xiangzhao, Li Sikun, et al. Aberration measurement method for hyper-NA lithographic projection lens[J]. Acta Optica Sinica, 2016, 36(1): 0112002.

    [11] Wong A K K. Optical imaging in projection microlithography[M]. Bellinghan: SPIE Press, 2005, TT66: 102-107.

    [12] Born M, Wolf E. Principles of optics[M]. Cambridge: Cambridge University Press, 1998: 411-417.

    [13] Yang J S, Wang X Z, Li S K, et al. High-order aberration measurement technique based on quadratic Zernike model with optimized source[J]. Opt Eng, 2013, 52(5): 053603.

    [14] Ward C, David K. Numerical mathematics and computing[M]. Brooks/Cole Publishing, 2008: 321-322.

    [15] Norihiro Y, Jongwook K, Harry J L. Polarization aberration analysis using Pauli-Zernike representation[C]. SPIE, 2007, 6520: 65200Y.

    [16] Shen Lina, Li Sikun, Wang Xiangzhao, et al. Analytical analysis for impact of polarization aberration of projection lens on lithographic imaging quality[C]. SPIE, 2015, 9426; 94261E.

    [17] Box G E P, Behnken D W. Some new three level designs for the study of quantitative variables[J]. Technometrics, 1960, 2(4): 455-475.

    [18] Chris A M. Lithography simulation in semiconductor manufacturing[C]. SPIE, 2005, 5645: 63-83.

    [19] Jolliffe I T. Principal component analysis[M]. New York: Springer Press, 2002: 150-165.

    [20] Rawlings J O, Pantula S G, Dickey D A. Applied regression analysis: a research tool[M]. New York: Springer Press, 2008: 93-97.

    [21] Lai K, Gallatin G M, van de Kerkhof M, et al. New paradigm in lens metrology for lithographic scanner: evaluation and exploration[C]. SPIE, 2004, 5377: 160-171.

    Zhu Boer, Wang Xiangzhao, Li Sikun, Meng Zejiang, Zhang Heng, Dai Fengzhao, Duan Lifeng. High-Order Aberration Measurement Method for Hyper-NA Lithographic Projection Lens[J]. Acta Optica Sinica, 2017, 37(4): 412003
    Download Citation