• Photonics Research
  • Vol. 3, Issue 3, 63 (2015)
Shahar Levy1, Matvei Klebanov2, and Avi Zadok1、*
Author Affiliations
  • 1Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel
  • 2Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
  • show less
    DOI: 10.1364/PRJ.3.000063 Cite this Article Set citation alerts
    Shahar Levy, Matvei Klebanov, Avi Zadok. High-Q ring resonators directly written in As2S3 chalcogenide glass films[J]. Photonics Research, 2015, 3(3): 63 Copy Citation Text show less
    References

    [1] B. T. Kolomiets. Vitreous semiconductors I. Phys. Status Solidi, 7, 359-372(1964).

    [2] B. T. Kolomiets. Vitreous semiconductors II. Phys. Status Solidi, 7, 713-731(1964).

    [3] R. Frerichs. New optical glasses with good transmission in the infrared. J. Opt. Soc. Am., 43, 1153-1157(1953).

    [4] K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, M. Minakata. Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching. Opt. Lett., 29, 265-267(2004).

    [5] J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, I. D. Aggarwal. Nonlinear properties of chalcogenide glass fibers. J. Optoelectron. Adv. Mater., 8, 2148-2155(2006).

    [6] A. Zakery, S. R. Elliot. Optical properties and applications of chalcogenide glasses: a review. J. Non-Cryst. Solids, 330, 1-12(2003).

    [7] E. Owen, A. P. Firth, P. J. S. Ewen. Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors. Philos. Mag. B, 52, 347-362(2006).

    [8] J. D. Musgraves, K. Richardson, H. Jain. Laser-induced structural modification, its mechanisms, and applications in glassy optical materials. Opt. Mater. Express, 1, 921-935(2011).

    [9] V. I. Mikla. Photoinduced structural changes and related phenomena in amorphous arsenic chalcogenides. J. Phys. Condens. Matter, 8, 429-448(1996).

    [10] A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson. Direct femtosecond laser writing of waveguides in As2S3 thin films. Opt. Lett., 29, 748-750(2004).

    [11] Y. Kaganovskii, D. L. Beke, S. Charnovych, S. Kokenyesi, M. L. Trunov. Inversion of the direction of photo-induced mass transport in As20Se80 films: experiment and theory. J. Appl. Phys., 110, 063502(2011).

    [12] A. Saliminia, T. V. Galstian, A. Villeneuve. Optical field-induced mass transport in As2S3 chalcogenide glasses. Phys. Rev. Lett., 85, 4112-4115(2000).

    [13] M. L. Trunov, P. M. Lytvyn, P. M. Nagy, O. M. Dyachyns’ka. Real-time atomic force microscopy imaging of photoinduced surface deformation in AsSe chalcogenide films. Appl. Phys. Lett., 96, 111908(2010).

    [14] M. L. Trunov, P. M. Lytvyn, O. M. Dyachyns’ka. Alternating matter motion in photoinduced mass transport driven and enhanced by light polarization in amorphous chalcogenide films. Appl. Phys. Lett., 97, 031905(2010).

    [15] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141-148(2011).

    [16] V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, B. Luther-Davies. Ultrafast all-optical chalcogenide glass photonic circuits. Opt. Express, 15, 9205-9221(2007).

    [17] M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, B. J. Eggleton. Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip. IEEE Photon. Technol. Lett., 22, 3-5(2010).

    [18] M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. L. Davies, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, B. J. Eggleton. Breakthrough switching speed with an all-optical chalcogenide glass chip: 640  Gbit/s demultiplexing. Opt. Express, 17, 2182-2187(2009).

    [19] S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, B. J. Eggleton. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Opt. Express, 15, 14414-14421(2007).

    [20] J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling. Demonstration of chalcogenide glass racetrack microresonator. Opt. Lett., 33, 761-763(2008).

    [21] Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, J. Hu. High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrate. Adv. Opt. Mater., 2, 478-486(2014).

    [22] L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, J. Hu. Integrated flexible chalcogenide glass photonic devices. Nat. Photonics, 8, 643-649(2014).

    [23] K. Turcotte, T. Li, J. M. Laniel, A. Villeneuve, C. Lopez, K. Richardson. Fabrication and characterization of chalcogenide optical waveguides. Integrated Photonics Research, 45, IFH4(2000).

    [24] O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, J. L. Bruneel. Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses. Opt. Mater. (Amsterdam), 17, 379-386(2001).

    [25] X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, B. Luther-Davies. Progress in optical waveguides fabricated from chalcogenide glasses. Opt. Express, 18, 26635-26646(2010).

    [26] S. Levy, V. Lyubin, M. Klebanov, J. Scheuer, A. Zadok. Stimulated Brillouin scattering amplification in centimeter-long directly written chalcogenide waveguides. Opt. Lett., 37, 5112-5114(2012).

    [27] A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, K. Richardson. First-and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses. J. Lightwave Technol., 17, 837-842(1999).

    [28] N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, N. C. Anheier. Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. Opt. Lett., 31, 1860-1862(2006).

    [29] Q. Li, M. Soltani, S. Yegnanarayanan, A. Adibi. Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform. Opt. Express, 17, 2247-2254(2009).

    [30] H. Park, J. P. Mack, D. J. Bluementhal, J. E. Bowers. An integrated recirculating optical buffer. Opt. Express, 16, 11124-11131(2008).

    [31] Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Micrometre scale silicon electro-optic modulator. Nature, 435, 325-327(2005).

    [32] W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, J. E. Bowers. Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector. Opt. Express, 15, 2315-2322(2007).

    [33] M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala. Label-free single-molecule detection with optical microcavities. Science, 317, 783-787(2007).

    [34] M. E. Solmaz, D. B. Adams, W. C. Tan, W. T. Snider, C. K. Madsen. Vertically integrated As2S3 ring resonator on LiNbO3. Opt. Lett., 34, 1735-1737(2009).

    [35] I. Abdullhalim, M. Gelbaor, M. Klebanov, V. Lyubin. Photoinduced phenomena in nano-dimentional glassy As2S3 films. Opt. Mater. Express, 1, 1192-1201(2011).

    [36] B. Spektor, J. Shamir, V. Lyubin, M. Klebanov. Recording on As2S3 glassy films by pulsed and continuous illumination—optical evaluation and comparison. Opt. Eng., 42, 3279-3284(2003).

    [37] R. Swanepoel. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E, 16, 1214-1222(1983).

    [38] G. Pfeiffer, M. A. Paesler, S. C. Agrawal. Reversible photodarkening of amorphous arsenic chalcogens. J. Non-Cryst. Solids, 130, 111-143(1991).

    [39] M. A. Iovu, M. S. Iovu, D. V. Harea, E. P. Colomeico, V. G. Ciorba. Light induced phenomena in amorphous As100-xSex and As40Se60:Sn thin films. Proc. SPIE, 6635, 663509(2007).

    [40] L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, M. Lipson. High quality factor etchless silicon photonic ring resonators. Opt. Express, 19, 6284-6289(2011).

    [41] A. Saliminia, T. Galstian, A. Villeneuve, K. Le Foulgoc, K. Richardson. Temperature dependence of Bragg reflectors in chalcogenide As2S3 glass slab waveguides. J. Opt. Soc. Am. B, 17, 1343-1348(2000).

    [42] G. Tao. Multimaterial fibers in photonics and nanotechnology(2014).

    CLP Journals

    [1] Jiawei Wang, Xiaobei Zhang, Ming Yan, Lei Yang, Fengyu Hou, Wen Sun, Xiaotong Zhang, Libo Yuan, Hai Xiao, Tingyun Wang. Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber[J]. Photonics Research, 2018, 6(12): 1124

    [2] Yu Xie, Dawei Cai, Hao Wu, Jing Pan, Ning Zhou, Chenguang Xin, Shaoliang Yu, Pan Wang, Xiaoshun Jiang, Jianrong Qiu, Xin Guo, Limin Tong. Mid-infrared chalcogenide microfiber knot resonators[J]. Photonics Research, 2020, 8(4): 616

    Shahar Levy, Matvei Klebanov, Avi Zadok. High-Q ring resonators directly written in As2S3 chalcogenide glass films[J]. Photonics Research, 2015, 3(3): 63
    Download Citation