• Photonics Research
  • Vol. 4, Issue 6, 293 (2016)
Hongwei Jia1、2, Fan Yang3, Ying Zhong4, and Haitao Liu1、*
Author Affiliations
  • 1Key Laboratory of Optical Information Science and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300071, China
  • 2SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 3State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
  • 4State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.1364/PRJ.4.000293 Cite this Article Set citation alerts
    Hongwei Jia, Fan Yang, Ying Zhong, Haitao Liu. Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas[J]. Photonics Research, 2016, 4(6): 293 Copy Citation Text show less
    References

    [1] R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. J. Chen, J. Irudayaraj, A. V. Kildishev, V. M. Shalaev. Nanoantenna array-induced fluorescence enhancement and reduced lifetimes. New J. Phys., 10, 125022(2008).

    [2] O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, J. Gómez Rivas. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett., 7, 2871-2875(2007).

    [3] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics, 3, 654-657(2009).

    [4] A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, M. D. Lukin. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 450, 402-406(2007).

    [5] H. Jia, H. Liu, Y. Zhong. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas. Sci. Rep., 5, 8456(2015).

    [6] X. W. Chen, V. Sandoghdar, M. Agio. Coherent interaction of light with a metallic structure coupled to a single quantum emitter: from superabsorption to cloaking. Phys. Rev. Lett., 110, 153605(2013).

    [7] P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hech, D. W. Pohl. Resonant optical antennas. Science, 308, 1607-1609(2005).

    [8] Z. Liu, E. Li, V. M. Shalaev, A. V. Kildishev. Near field enhancement in silver nanoantenna–superlens systems. Appl. Phys. Lett., 101, 021109(2012).

    [9] H. Fischer, O. J. Martin. Polarization sensitivity of optical resonant dipole antennas. J. Eur. Opt. Soc., 3, 08018(2008).

    [10] L. Novotny, N. Van Hulst. Antennas for light. Nat. Photonics, 5, 83-90(2011).

    [11] H. Jia, P. Lalanne, H. Liu. Comprehensive surface-wave description for the nano-scale energy concentration with resonant dipole antennas. Plasmonics, 11, 1025-1033(2016).

    [12] R. Esteban, G. Aguirregabiria, A. G. Borisov, Y. M. Wang, P. Nordlander, G. W. Bryant, J. Aizpurua. The morphology of narrow gaps modifies the plasmonic response. ACS Photon., 2, 295-305(2015).

    [13] T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, A. Leitenstorfer. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett., 103, 257404(2009).

    [14] H. Harutyunyan, G. Volpe, R. Quidant, L. Novotny. Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys. Rev. Lett., 108, 217403(2012).

    [15] W. Zhang, H. Fischer, T. Schmid, R. Zenobi, O. J. Martin. Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas. J. Phys. Chem. C, 113, 14672-14675(2009).

    [16] F. Jäckel, A. A. Kinkhabwala, W. E. Moerner. Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential. Chem. Phys. Lett., 446, 339-343(2007).

    [17] K. Höflich, M. Becker, G. Leuchs, S. Christiansen. Plasmonic dimer antennas for surface enhanced Raman scattering. Nanotechnology, 23, 185303(2012).

    [18] M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, M. Pelton. Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys. Rev. Lett., 102, 107401(2009).

    [19] J. S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, B. Hecht. Mode imaging and selection in strongly coupled nanoantennas. Nano Lett., 10, 2105-2110(2010).

    [20] C. Sauvan, J. P. Hugonin, I. S. Maksymov, P. Lalanne. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett., 110, 237401(2013).

    [21] J. Yang, H. Giessen, P. Lalanne. Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing. Nano Lett., 15, 3439-3444(2015).

    [22] E. S. C. Ching, P. T. Leung, A. M. van den Brink, W. M. Suen, S. S. Tong, K. Young. Quasinormal-mode expansion for waves in open systems. Rev. Mod. Phys., 70, 1545-1554(1998).

    [23] Q. Bai, M. Perrin, C. Sauvan, J. P. Hugonin, P. Lalanne. Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure. Opt. Express, 21, 27371-27382(2013).

    [24] R. C. Ge, P. T. Kristensen, J. F. Young, S. Hughes. Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics. New J. Phys., 16, 113048(2014).

    [25] C. Sauvan, J. P. Hugonin, R. Carminati, P. Lalanne. Modal representation of spatial coherence in dissipative and resonant photonic systems. Phys. Rev. A, 89, 043825(2014).

    [26] R. C. Ge, J. F. Young, S. Hughes. Quasi-normal mode approach to the local-field problem in quantum optics. Optica, 2, 246-249(2015).

    [27] P. T. Leung, Y. T. Liu, C. Y. Tam, K. Young. Numerical solution for quasinormal modes for potentials with exponential tails. Phys. Lett. A, 247, 253-260(1998).

    [28] J. Wiersig. Boundary element method for resonances in dielectric microcavities. J. Opt. A, 5, 53-60(2003).

    [29] M. B. Doost, W. Langbein, E. A. Muljarov. Resonant-state expansion applied to three-dimensional open optical systems. Phys. Rev. A, 90, 013834(2014).

    [30] P. T. Leung, S. Y. Liu, K. Young. Completeness and orthogonality of quasinormal modes in leaky optical cavities. Phys. Rev. A, 49, 3057-3067(1994).

    [31] E. A. Muljarov, W. Langbein, R. Zimmermann. Brillouin–Wigner perturbation theory in open electromagnetic systems. Europhys. Lett., 92, 50010(2010).

    [32] M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, M. C. Wu. Optical antenna enhanced spontaneous emission. Proc. Natl. Acad. Sci. USA, 112, 1704-1709(2015).

    [33] A. Alù, N. Engheta. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys. Rev. Lett., 101, 043901(2008).

    [34] A. Artar, A. A. Yanik, H. Altug. Directional double Fano resonances in plasmonic hetero-oligomers. Nano Lett., 11, 3694-3700(2011).

    [35] R. Adato, H. Altug. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat. Commun., 4, 2154(2013).

    [36] C. Vassallo. Optical Waveguide Concepts(1991).

    [37] D. E. Chang, A. S. Sørensen, P. R. Hemmer, M. D. Lukin. Strong coupling of single emitters to surface plasmons. Phys. Rev. B, 76, 035420(2007).

    [38] H. Liu. Coherent-form energy conservation relation for the elastic scattering of a guided mode in a symmetric scattering system. Opt. Express, 21, 24093-24098(2013).

    [39] R. Gordon. Reflection of cylindrical surface waves. Opt. Express, 17, 18621-18629(2009).

    [40] A. Aubry, D. Y. Lei, S. A. Maier, J. B. Pendry. Interaction between plasmonic nanoparticles revisited with transformation optics. Phys. Rev. Lett., 105, 233901(2010).

    [41] T. H. Taminiau, F. D. Stefani, N. F. van Hulst. Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes. Nano Lett., 11, 1020-1024(2011).

    [42] L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P. M. Adam, P. Royer. Short range plasmon resonators probed by photoemission electron microscopy. Nano Lett., 8, 935-940(2008).

    [43] C. Liu, H. Liu, Y. Zhong. Impact of surface plasmon polaritons and other waves on the radiation of a dipole emitter close to a metallic nanowire antenna. Opt. Express, 22, 25539-25549(2014).

    [44] J. Dorfmuller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrichm, K. Kern. Plasmonic nanowire antennas: experiment, simulation, and theory. Nano Lett., 10, 3596-3603(2010).

    [45] P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, B. Hecht. Cross resonant optical antenna. Phys. Rev. Lett., 102, 256801(2009).

    [46] J. Scheuer. Ultra-high enhancement of the field concentration in split ring resonators by azimuthally polarized excitation. Opt. Express, 19, 25454-25464(2011).

    [47] E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, X. Zhang. Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett., 95, 043113(2009).

    [48] S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, M. Wang. Controlling the polarization state of light with a dispersion-free metastructure. Phys. Rev. X, 4, 021026(2014).

    [49] X. Zhang, C. J. Chung, S. Wang, H. Subbaraman, Z. Pan, Q. Zhan, R. T. Chen. Integrated broadband bowtie antenna on transparent silica substrate. IEEE Antennas Wireless Propag. Lett., 15, 1377-1381(2016).

    [50] Z. Pan, J. Guo. Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas. Opt. Express, 21, 32491-32500(2013).

    [51] E. D. Palik. Handbook of Optical Constants of Solids Part II(1985).

    [52] J. P. Hugonin, P. Lalanne. Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization. J. Opt. Soc. Am. A, 22, 1844-1849(2005).

    [53] H. Liu. DIF CODE for Modeling Light Diffraction in Nanostructures(2010).

    [54] M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, D. Van Labeke. Numerical analysis of a slit-groove diffraction problem. J. Eur. Opt. Soc., 2, 07022(2007).

    [55] L. Li. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A, 13, 1024-1035(1996).

    [56] Y. Li, H. Liu, H. Jia, F. Bo, G. Zhang, J. Xu. Fully-vectorial modeling of cylindrical microresonators with aperiodic Fourier modal method. J. Opt. Soc. Am. A, 31, 2459-2466(2014).

    [57] E. M. Purcell. Spontaneous emission probabilities at radio frequencies. Phys. Rev., 69, 37-38(1946).

    [58] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).

    [59] M. Agio. Optical antennas as nanoscale resonators. Nanoscale, 4, 692-706(2012).

    [60] P. T. Leung, S. S. Tong, K. Young. Two-component eigenfunction expansion for open systems described by the wave equation I: completeness of expansion. J. Phys. A, 30, 2139-2151(1997).

    [61] P. T. Leung, S. S. Tong, K. Young. Two-component eigenfunction expansion for open systems described by the wave equation II: linear space structure. J. Phys. A, 30, 2153-2162(1997).

    [62] F. Yang, H. Liu, H. Jia, Y. Zhong. Analytical description of quasi normal mode in resonant plasmonic nano-cavities. J. Opt., 18, 035003(2016).

    [63] G. B. Arfken. Mathematical Methods for Physicists(2005).

    [64] M. B. Doost, W. Langbein, E. A. Muljarov. Resonant state expansion applied to two-dimensional open optical systems. Phys. Rev. A, 87, 043827(2013).

    [65] F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, M. P. van Exter. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission. Nature, 492, 411-414(2012).

    CLP Journals

    [1] Jinghuan Yang, Quan Sun, Han Yu, Kosei Ueno, Hiroaki Misawa, Qihuang Gong. Spatial evolution of the near-field distribution on planar gold nanoparticles with the excitation wavelength across dipole and quadrupole modes[J]. Photonics Research, 2017, 5(3): 187

    [2] Mian Wang, Cheng Yin, Youqiao Ma, Jun Zhou, Hanhua Zhong, Xianfeng Chen. Polarization and structure dependent optical characteristics of the three-arm nanoantenna with C3v symmetry and broken symmetry[J]. Chinese Optics Letters, 2018, 16(5): 052501

    Hongwei Jia, Fan Yang, Ying Zhong, Haitao Liu. Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas[J]. Photonics Research, 2016, 4(6): 293
    Download Citation