• Chinese Optics Letters
  • Vol. 16, Issue 9, 092701 (2018)
Junheng Shi1、2、3, Giuseppe Patera3, Youzhen Gui1, Mikhail I. Kolobov3、*, Dmitri B. Horoshko3、4, and Shensheng Han1、**
Author Affiliations
  • 1Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Univ. Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers Atomes et Molécules, F-59000 Lille, France
  • 4B I. Stepanov Institute of Physics, NASB, Minsk 220072, Belarus
  • show less
    DOI: 10.3788/COL201816.092701 Cite this Article Set citation alerts
    Junheng Shi, Giuseppe Patera, Youzhen Gui, Mikhail I. Kolobov, Dmitri B. Horoshko, Shensheng Han. Improving the resolution in quantum and classical temporal imaging[J]. Chinese Optics Letters, 2018, 16(9): 092701 Copy Citation Text show less

    Abstract

    The point-spread function of an optical system determines its optical resolution for both spatial and temporal imaging. For spatial imaging, it is given by a Fourier transform of the pupil function of the system. For temporal imaging based on nonlinear optical processes, such as sum-frequency generation or four-wave mixing, the point-spread function is related to the waveform of the pump wave by a nonlinear transformation. We compare the point-spread functions of three temporal imaging schemes: sum-frequency generation, co-propagating four-wave mixing, and counter-propagating four-wave mixing, and demonstrate that the last scheme provides the best temporal resolution. Our results are valid for both quantum and classical temporal imaging.
    kμ(ω)kμ(ωμ)+βμ(1)Ω+βμ(2)Ω2/2,(1)

    View in Article

    E^μ(+)(t,z)=Eμei(kμzωμt)A^μ(τ,z),(2)

    View in Article

    A^μ(τ,z)=12πϵ^μ(Ω,z)eiβμ(2)Ω2(zz0)/2iΩτdΩ,(3)

    View in Article

    A^s(τ,z2)=c(τ)A^s(τ,z1)s(τ)eiϕ(τ)A^i(τ,z1),A^i(τ,z2)=s(τ)eiϕ(τ)A^s(τ,z1)+c(τ)A^i(τ,z1),(4)

    View in Article

    c(τ)=cos[gAp(τ)L],s(τ)=sin[gAp(τ)L].(5)

    View in Article

    |c(τ)|2+|s(τ)|2=1.(6)

    View in Article

    A^out(τ)=i|M|exp(iτ22|M|Df)×[p˜(τ,τ)A^in(τM)dτ+q˜(τ,τ)B^in(τM)dτ],(7)

    View in Article

    p˜(τ,τ)=p(ττ)eiθ(τ,τ),(8)

    View in Article

    q˜(τ,τ)=q(ττ)eiθ(τ,τ),(9)

    View in Article

    p(τ)=12πdΩeiτΩs(DoutΩ),(10)

    View in Article

    q(τ)=12πdΩeiτΩc(DoutΩ),(11)

    View in Article

    θ(τ,τ)=τ2τ22|M|Dout.(12)

    View in Article

    1Din+1Dout=1Df,(13)

    View in Article

    p˜(τ,s)p˜*(τ,s)ds+q˜(τ,s)q˜*(τ,s)ds=δ(ττ),(14)

    View in Article

    A^out(τ)=i|M|exp(iτ22|M|Df)×[p(ττ)A^in(τM)dτ+q(ττ)B^in(τM)dτ].(15)

    View in Article

    A^out(τ)=i|M|exp(iτ22|M|Df)A^in(τM),(16)

    View in Article

    R=Δ|M|.(17)

    View in Article

    Ap(τ)=Apexp[τ22(Dfδωp)2].(18)

    View in Article

    s(τ)=sin{θ0exp[τ22(Dfδωp)2]}.(19)

    View in Article

    p(τ)=n=1(1)nθ02n1(2n1)!exp[(2n1)τ22(Dfδωp)2].(20)

    View in Article

    p(τ)=n=1(1)nθ02n1(2n1)!δωp2n1×exp[(τδωp)22(2n1)M2].(21)

    View in Article

    R=22ln2|M|δωp/|M|2.35δωp.(22)

    View in Article

    p3(τ)=δωpθ0{exp[(τδωp)22M2]θ023!3exp[(τδωp)26M2]+θ045!5exp[(τδωp)210M2]}.(23)

    View in Article

    R2.12δωp.(24)

    View in Article

    α1(τ)=A1(τ)eiϕ1(τ),α2(τ)=A2(τ)eiϕ2(τ).(25)

    View in Article

    A^s(τ,z2)=c(τ)A^s(τ,z1)+is(τ)eiϕ(τ)A^i(τ,z1),A^i(τ,z2)=is(τ)eiϕ(τ)A^s(τ,z1)+c(τ)A^i(τ,z1),(26)

    View in Article

    c(τ)=cos[gA1(τ)A2(τ)L],s(τ)=sin[gA1(τ)A2(τ)L].(27)

    View in Article

    s(τ)=sin[gA1(τ)A2(τ)L].(28)

    View in Article

    A1(τ)=A2(τ)=Apexp[τ22(2Dfδωp)2],(29)

    View in Article

    ϕ1(τ)=ϕ2(τ)=τ24Df.(30)

    View in Article

    p(τ)=2θ0δωpexp[(τδωp)24M2].(31)

    View in Article

    R1.67δωp.(32)

    View in Article

    R1.50δωp.(33)

    View in Article

    A^s(τ,z2)=c(τ)A^s(τ,z1)+is(τ)eiϕ(τ)A^i(τ,z1),A^i(τ,z2)=is(τ)eiϕ(τ)A^s(τ,z1)+c(τ)A^i(τ,z1),(34)

    View in Article

    c(τ)=1cosh[γA1(τ)A2(τ)L],s(τ)=tanh[γA1(τ)A2(τ)L].(35)

    View in Article

    s(τ)=tanh{θ0exp[τ22(2Dfδωp)2]}.(36)

    View in Article

    R1.47δωp.(37)

    View in Article

    R0.93δωp,(38)

    View in Article

    Junheng Shi, Giuseppe Patera, Youzhen Gui, Mikhail I. Kolobov, Dmitri B. Horoshko, Shensheng Han. Improving the resolution in quantum and classical temporal imaging[J]. Chinese Optics Letters, 2018, 16(9): 092701
    Download Citation