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The point-spread function of an optical system determines its optical resolution for both spatial and temporal
imaging. For spatial imaging, it is given by a Fourier transform of the pupil function of the system. For temporal
imaging based on nonlinear optical processes, such as sum-frequency generation or four-wave mixing, the point-
spread function is related to the waveform of the pump wave by a nonlinear transformation. We compare the
point-spread functions of three temporal imaging schemes: sum-frequency generation, co-propagating four-wave
mixing, and counter-propagating four-wave mixing, and demonstrate that the last scheme provides the best
temporal resolution. Our results are valid for both quantum and classical temporal imaging.
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Temporal imaging is a technique for manipulating tempo-
ral waveforms of optical signals similar to themanipulation
of spatial wavefronts in conventional spatial imaging. It is
based on the space–time analogy, i.e., equivalence of the
phenomena of wave propagation in dispersive media and
wave diffraction in free space[1]. In the last decades, tempo-
ral imaging has been growing very rapidly with numerous
applications from stretching of ultrafast waveforms and
compression of slow waveforms, to temporal microscopes,
time reversal, and spectral phase conjugation[2].
The key element of a temporal imaging system is a time

lens, introducing a quadratic in-time phase modulation
into a temporal waveform similarly to its spatial counter-
part. Optical time lenses have been realized using electro-
optical phase modulation[3–7], sum-frequency generation
(SFG)[8,9], and four-wave mixing (FWM)[10–13].
Almost all applications of temporal imaging have been

applied to classical optical fields and did neglect their
quantum nature. However, temporal imaging has many
potential applications in quantum optics and quantum
information. For instance, it should allow for noiseless
compression or stretching of nonclassical waveforms with-
out destroying their quantum features. Such applications
of quantum temporal imaging still are waiting for their ex-
perimental demonstrations, and only a few papers have
addressed the subject so far. Some aspects of temporal im-
aging for nonclassical states of light with a few photons
were considered in Refs. [7,14–17]. Quantum temporal im-
aging of broadband squeezed light was discussed in
Refs. [18–20]. In particular, it was pointed out that special
care must be taken for temporal imaging of squeezed light
using SFG and FWM processes.

Optical resolution is one of the most important param-
eters characterizing an imaging system in both spatial and
temporal imaging. It can be evaluated from the knowledge
of its point-spread function, which describes the response
of the system to a point-like object in space or time. It is
well-known in spatial imaging that the resolution of an
optical system is limited by diffraction and that the
point-spread function of the system is given by a Fourier
transform of its pupil function. In temporal imaging
based on nonlinear optical phenomena, such as SFG or
FWM, the situation is more complicated. Indeed, due
to the nonlinear nature of the process, the point-spread
function of a temporal imaging system in general is re-
lated to the temporal waveform of the pump wave by
a nonlinear transformation. When the efficiency of non-
linear interaction is very small and one can use the linear
approximation, the point-spread function is given by the
Fourier transform of the pump profile[21,22]. However, in
this approximation the efficiency of the time lens is very
small. This does not create particular problems for
classical temporal imaging when the statistical properties
of the transmitted light are not relevant. But, in quan-
tum temporal imaging, the low efficiency of a lens is det-
rimental for the nonclassical features, such as squeezing,
entanglement, or nonclassical photon statistics[18–20].
Therefore, in quantum temporal imaging, one has to
use the time lens with the efficiency close to unity , con-
sequently, when the point-spread function is a nonlinear
function of the pump profile.

In this Letter, we investigate three simple temporal
imaging schemes based on nonlinear time lenses: SFG,
co-propagating (CBS), and counter-propagating (CPBS)
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FWM of the Bragg-scattering type. We evaluate the pupil
function in terms of the pump profile for these schemes
and use the width of the corresponding point-spread
functions as the resolution limit. We demonstrate that
the counter-propagating FWM scheme provides the best
choice in terms of the resolution. Even if we limit our con-
sideration to the coherent input states of light, i.e.,
classical temporal imaging, our results remain valid for
quantum temporal imaging because the relevant point-
spread function is the same for both cases.
We consider a simple temporal imaging system shown

in Fig. 1. It consists of a first dispersive medium followed
by a time lens and the second dispersive medium. In the
following, we will refer to the first (second) medium as
the input (output) dispersive medium. The time lens is
implemented by a nonlinear process that can be either
SFG or FWM. In this section, we consider the SFG geom-
etry, while the FWM case will be addressed in the next
section. In the SFG process, a strong pump wave of fre-
quency ωp is converted into a signal wave of the fre-
quency ωs and the idler waves of the frequency ωi ,
such that ωs þ ωp ¼ ωi .
We use the plane-wave approximation and describe

each field by its positive-frequency amplitude EðþÞ
μ ðt; zÞ

at the time t and the longitudinal position z, where the
index μ ¼ fs; i; pg identifies the signal, the idler, or the
pump waves, respectively. We consider the signal and
the idler waves as quantum-mechanical operators and
the pump wave as a classical c function. All waves are as-
sumed to be narrowband with the carrier frequencies ωμ.
Each wave passing through a medium experiences
dispersion characterized by the dependence of its wave
vector kμðωÞ on frequency ω, which we decompose around
the carrier frequency at Ω ¼ ω− ωμ and limit the Taylor
series to the first three terms:

kμðωÞ ≈ kμðωμÞ þ βð1Þμ Ωþ βð2Þμ Ω2∕2; (1)

where βð1Þμ ¼ ðdkμ∕dΩÞωμ
is the inverse group velocity, and

βð2Þμ ¼ ðd2kμ∕dΩ2Þωμ
is the group velocity dispersion of the

medium at the carrier frequency ωμ.
We introduce a frame of reference traveling with the

wave at the group velocity, possibly different in each
medium. Thus, for each point z, we introduce the delayed
time τ ¼ t − τμðzÞ, where τμðzÞ is the total delay for the

wave EðþÞ
μ ðt; zÞ from the object plane at z ¼ z in to the

point z between z in and the image plane z ¼ zout. A delay
in a medium of the length l for the inverse group velocity

βð1Þμ is βð1Þμ l, and the total delay τμðzÞ can be found by sum-
ming the delays of all media between z in and z.

In this reference frame, we can write

ÊðþÞ
μ ðt; zÞ ¼ Eμeiðkμz−ωμtÞÂμðτ; zÞ; (2)

where Eμ is the single-photon field amplitude, kμðωμÞ ¼ kμ,
and field envelope Âμðτ; zÞ is given by

Âμðτ; zÞ ¼
1
2π

Z
∞

−∞
ϵ̂μðΩ; zÞeiβ

ð2Þ
μ Ω2ðz−z0Þ∕2−iΩτdΩ; (3)

with ϵ̂ðΩ; zÞ being the slowly varying quantum ampli-
tude[23,24] for the given medium with the entrance point
at z0.

Assuming the perfect phase matching and the unde-
pleted pump, the SFG time lens can be described by
the following unitary transformation from the point z1
(time lens input) to the point z2 (time lens output)[18]:

Âsðτ; z2Þ ¼ cðτÞÂsðτ; z1Þ− sðτÞe−iϕðτÞÂiðτ; z1Þ;
Âiðτ; z2Þ ¼ sðτÞeiϕðτÞÂsðτ; z1Þ þ cðτÞÂiðτ; z1Þ; (4)

with

cðτÞ ¼ cos½gApðτÞL�; sðτÞ ¼ sin½gApðτÞL�: (5)

Here, L ¼ z2 − z1 is the length of the nonlinear medium,
while ApðτÞ and ϕðτÞ are the modulus and phase of the
pump pulse. For the implementation of a time lens, a short
Gaussian pulse of duration τp is propagated through a dis-
persive medium of length Lp and group velocity dispersion

βð2Þp at the carrier frequency ωp. At the output of the
medium, the pump pulse is stretched to the duration T ≫
τp and acquires a phase that is quadratic in time, ϕðτÞ ¼
τ2∕2Df with Df ¼ −βð2Þp Lp known as the focal group delay
dispersion (GDD)[21,22]. In the present work, we consider

only the case of negatively chirped pump βð2Þp < 0 for def-
initeness. As a consequence, Df > 0. We also assume that
the signal and the idler beams pass through the media
with positive dispersion so that both Din and Dout are
positive.

Equation (4) describes a unitary transformation of the
photon annihilation operators of the signal and the idlerFig. 1. Temporal imaging system with a single time lens.
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waves from the input of the SFG crystal to its output, pre-
serving the canonical commutation relations. As follows
from their definitions, the coefficients cðτÞ and sðτÞ satisfy
the condition

jcðτÞj2 þ jsðτÞj2 ¼ 1. (6)

Therefore, they can be interpreted as the reflection and
the transmission coefficients of an equivalent beam split-
ter. For time lens applications, the signal port is injected
with an input state, while the input idler port is empty. As
a consequence, the vacuum fluctuations enter into the
process through this port and mix with the input state.
Since these vacuum fluctuations are detrimental for the
nonclassical input states, they need to be avoided. They
can be eliminated by setting experimental conditions such
that the conversion efficiency is η ¼ jsðτÞj2 ¼ 1. This
condition can be obtained by requiring gApðτÞL ¼ π∕2.
However, since the pump pulses have a finite duration,
the previous conditions cannot be satisfied for all τ. The
consequence is that the time lens presents a finite temporal
aperture that lets in vacuum fluctuations.
Combining Eq. (4) with the free propagation in the dis-

persive media before and after the lens, we obtain the
transformation of the field from the object plane to the
image plane,

ÂoutðτÞ ¼
i��������jM jp exp

�
−

iτ2

2jM jDf

�

×
�Z

∞

−∞
~pðτ; τ0ÞÂin

�
τ0

M

�
dτ0

þ
Z

∞

−∞
~qðτ; τ0ÞB̂in

�
τ0

M

�
dτ0

�
; (7)

where we have denoted ÂoutðτÞ ¼ Âiðτ; zoutÞ,
ÂinðτÞ ¼ Âsðτ; z inÞ, and B̂inðτÞ ¼ Âiðτ; z inÞ. The last oper-
ator describes the vacuum field of the idler in the object
plane and is absent in the classical temporal imaging
theory. The impulse response functions ~pðτ; τ0Þ and
~qðτ; τ0Þ in Eq. (7) have the following form:

~pðτ; τ0Þ ¼ pðτ − τ0Þeiθðτ;τ0Þ; (8)

~qðτ; τ0Þ ¼ qðτ − τ0Þeiθðτ;τ0Þ; (9)

where the function pðτÞ is the point-spread function of the
classical imaging transformation[1],

pðτÞ ¼ 1
2π

Z
∞

−∞
dΩeiτΩsðDoutΩÞ; (10)

and the function qðτÞ is the second point-spread function
necessary for the quantum description of our temporal im-
aging scheme. It describes the temporal imaging of the
quantum fluctuations of the field B̂inðτÞ and is absent
in the classical theory of temporal imaging because such
fluctuations do not exist in the classical theory. This

point-spread function is given by the following Fourier
transform of the coefficient cðτÞ from Eq. (5), properly
scaled and phase-adjusted as follows:

qðτÞ ¼ 1
2π

Z
∞

−∞
dΩeiτΩc0ðDoutΩÞ; (11)

with c0ðτÞ ¼ cðτÞ expð−iτ2∕2Df Þ, and

θðτ; τ0Þ ¼ τ2 − τ02

2jM jDout
: (12)

In derivation of Eqs. (8) and (9), we have used the time
lens of Eq. (1),

1
Din

þ 1
Dout

¼ 1
Df

; (13)

and the definition of the magnification M ¼ −Dout∕Din.
The impulse response functions ~pðτ; τ0Þ and ~qðτ; τ0Þ sat-

isfy the relation

Z
∞

−∞
~pðτ; sÞ ~p�ðτ0; sÞds þ

Z
∞

−∞
~qðτ; sÞ~q�ðτ0; sÞds ¼ δðτ − τ0Þ;

(14)

required by the unitarity of Eq. (7).
While the transfer function pðτ; τ0Þ is well-known in the

classical temporal imaging theory[1,21], the second term in
Eq. (7) with the transfer function qðτ; τ0Þ was introduced
for the first time, to the best of our knowledge, in Ref. [25].
Using the time-invariant approximation as in Ref. [25],
Eq. (7) can be rewritten in the following simple form:

ÂoutðτÞ ¼
i��������jM jp exp

�
−

iτ2

2jM jDf

�

×
�Z

∞

−∞
pðτ − τ0ÞÂin

�
τ0

M

�
dτ0

þ
Z

∞

−∞
qðτ − τ0ÞB̂in

�
τ0

M

�
dτ0

�
: (15)

The overall transformation in Eq. (15) consists of three
elementary transformations for each input field: (i) scaling
of time with the factorM , (ii) temporal convolution with a
time-invariant transfer function, and (iii) multiplication
by a quadratic in-time phase factor. In the next section,
we show that such evolution corresponds to a simple
transformation of the spectrum observed in a homodyne
measurement with a properly chosen local oscillator.

In the limiting case of infinitely long temporal aperture,
T → ∞, and the conversion efficiency equal to unity,
we have sðτÞ ¼ 1, and, as a consequence, pðτÞ ¼ δðτÞ,
qðτÞ ¼ 0, wherefrom
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ÂoutðτÞ ¼
i��������jM jp exp

�
−

iτ2

2jM jDf

�
Âin

�
τ

M

�
; (16)

which reproduces the result of Ref. [18].
In this Letter, we shall be interested only in the coherent

states of the light at the input. For such states, the vac-
uum contribution in Eq. (7) can be neglected. For the non-
classical input state, namely, broadband squeezed state,
we refer the reader to Ref. [25].
Analogously to Rayleigh criterion in the spatial imag-

ing, we define the temporal resolution parameter as the
full width at half-maximum (FWHM) Δ of the point-
spread function pðτÞ divided by the magnification factor

R ¼ Δ
jM j : (17)

In the following subsection, we shall investigate this res-
olution parameter for the Gaussian profile of the
pump wave.
In this subsection, we shall consider a Gaussian pump

profile described by

ApðτÞ ¼ Ap exp
�
−

τ2

2ðDf δωpÞ2
�
: (18)

In literature, the pump of a time lens based on the non-
linear process is produced by passing an ultrashort pulse
through a linear dispersive medium, inevitably resulting in
a Gaussian-shaped pump profile. Another advantage of
using such a pump shape is that one can obtain a simple
analytical estimation of the Rayleigh resolution limitR for
the temporal imaging scheme. For convenience, we define
θ0 ¼ gApL. Note that this parameter is dimensionless. The
pupil function becomes

sðτÞ ¼ − sin
�
θ0 exp

�
−

τ2

2ðDf δωpÞ2
��

: (19)

Expanding the sine function in its Taylor series, we can
write this pupil function as

pðτÞ ¼
X∞
n¼1

ð−1Þnθ2n−1
0

ð2n − 1Þ! exp
�
−
ð2n − 1Þτ2
2ðDf δωpÞ2

�
: (20)

Taking the Fourier transform of the Gaussian function
and considering the case of large magnification, jM j ≫ 1,
we obtain the following result for the point-spread func-
tion of the system:

pðτÞ ¼
X∞
n¼1

ð−1Þnθ2n−1
0

ð2n − 1Þ!
δωp���������������
2n − 1

p × exp
�
−

ðτδωpÞ2
2ð2n − 1ÞM 2

�
:

(21)

For θ0 ≪ π∕2, we approximate pðτÞ by the first term in
the Taylor series. Note that this is the case of the low con-
version efficiency η ≪ 1, and the pupil function is linearly

proportional to the pump amplitude profile[21]. The resolu-
tion in this limit is given by

R ¼ 2
�������������
2 ln 2

p jM j
δωp

∕jM j ≈ 2.35
δωp

: (22)

The value of θ0 ¼ π∕2 corresponds to the optimal con-
version efficiency of the lens, η ¼ 1. In this case, the maxi-
mum value of the pupil function sðτÞ is reached at its
center τ ¼ 0, and the pupil function is monotonously de-
creasing with jτj. For θ0 ¼ π∕2, we approximate the pupil
function sðτÞ by the first three terms of the Taylor series
sðτÞ ≈ s3ðτÞ. We have illustrated the quality of this
approximation in Fig. 2. One can see that it is excellent.

The corresponding approximated point-spread function
is

p3ðτÞ ¼ δωpθ0

�
exp

�
−
ðτδωpÞ2
2M 2

�

−
θ20

3!
���
3

p exp
�
−
ðτδωpÞ2
6M 2

�

þ θ40
5!

���
5

p exp
�
−
ðτδωpÞ2
10M 2

��
: (23)

By calculating the width Δ of this function, we obtain
the resolution

R ≈
2.12
δωp

: (24)

As we further increase the value of θ0 to θ0 > π∕2, the
conversion efficiency η starts to deteriorate, and the pupil
function becomes oscillating. Since this situation is less fa-
vorable for temporal imaging, we shall not consider these
values of θ0 in this Letter.

We note that for the FWM-based time lens we consider
only the phase-preserving configuration corresponding to

5.005.0-

p

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Comparison of the exact pupil functions sðτÞ and its
approximation s3ðτÞ by the first three terms in the Taylor
expansion.
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the Bragg-scattering type of FWM and not the phase-
conjugating FWM. These two configurations were
successfully implemented for time lenses in the classical
regime[11–13,26] and show similar behavior. However, it has
been recently demonstrated that for the quantum tempo-
ral imaging with broadband squeezed light the behavior of
these configurations is very different[20]. Precisely, the
phase-conjugating configuration is detrimental to squeez-
ing present in the input light because of the spontaneous
parametric down-conversion accompanying parametric
amplification process inherent for this configuration. On
the contrary, the phase-preserving scheme under suitable
conditions preserves squeezing in the input light.
Even if in this Letter we are not dealing with the

nonclassical input states of the light, we shall restrict
our attention to only the Bragg-scattering type of
FWM in view of future potential applications for quantum
temporal imaging.
We shall first consider the temporal resolution of the

CBS time lens. A signal wave with the carrier frequency
ωs is mixed with two strong pump waves with the carrier
frequencies ω1 and ω2 and produces an idler wave with
carrier frequency ωi ¼ ωs þ ω2 − ω1 inside a nonlinear
medium with the third-order susceptibility χð3Þ. All four
waves are propagating in the same direction. We write
the classical complex amplitudes of the pump waves as

α1ðτÞ ¼ A1ðτÞeiϕ1ðτÞ;

α2ðτÞ ¼ A2ðτÞeiϕ2ðτÞ: (25)

This configuration was investigated in Ref. [20], and we
refer to this paper for more details. In particular, it was
demonstrated that the Eq. (4) has to be replaced by

Âsðτ; z2Þ ¼ c0ðτÞÂsðτ; z1Þ þ is0ðτÞe−iϕðτÞÂiðτ; z1Þ;
Âiðτ; z2Þ ¼ is0ðτÞeiϕðτÞÂsðτ; z1Þ þ c0ðτÞÂiðτ; z1Þ; (26)

with ϕðτÞ ¼ ϕ1ðτÞ− ϕ2ðτÞ, and

c0ðτÞ ¼ cos½gA1ðτÞA2ðτÞL�;
s0ðτÞ ¼ sin½gA1ðτÞA2ðτÞL�: (27)

The pupil function of the CBS time lens is given by

s0ðτÞ ¼ sin½gA1ðτÞA2ðτÞL�: (28)

Since it has the same form as the pupil function sðτÞ for
the SFG time lens, following the same method, it is easy to
obtain the temporal resolutions of the CBS time lens.
We shall assume that the two pump waves are produced

by passing two identical ultrashort pulses with spectral
width δωp through the dispersive media with opposite
GDDs, 2Df and−2Df , respectively. We shall also consider
the Gaussian amplitude profiles for both pump fields,

A1ðτÞ ¼ A2ðτÞ ¼ Ap exp
�
−

τ2

2ð2Df δωpÞ2
�
; (29)

ϕ1ðτÞ ¼ −ϕ2ðτÞ ¼
τ2

4Df
: (30)

For convenience, we define θ00 ¼ γA2
pL, which is also

dimensionless.
For θ00 ≪ π∕2 and large magnification jM j ≫ 1, we

obtain the point-spread function p0ðτÞ as

p0ðτÞ ¼
���
2

p
θ00δωp exp

�
−
ðτδωpÞ2
4M 2

�
: (31)

In this case, the resolution of the system is given by

R ≈
1.67
δωp

: (32)

For θ00 ¼ π∕2, which corresponds to the unity conver-
sion efficiency of the lens, and for jM j ≫ 1, we have the
following resolution:

R ≈
1.50
δωp

: (33)

For θ00 > π∕2, the behavior of the pupil and the point-
spread function is similar to that of the SFG time lens.
Therefore, we shall not investigate these values of θ00.

Now we turn to the case of the CPBS FWM time lens.
The only difference with respect to the CBS case is that
now the two pump waves as well as the signal and the idler
waves are counter propagating. Now the solution for the
temporal lens has the form

Âsðτ; z2Þ ¼ c00ðτÞÂsðτ; z1Þ þ is00ðτÞe−iϕðτÞÂiðτ; z1Þ;
Âiðτ; z2Þ ¼ is00ðτÞeiϕðτÞÂsðτ; z1Þ þ c00ðτÞÂiðτ; z1Þ; (34)

with ϕðτÞ ¼ ϕ1ðτÞ− ϕ2ðτÞ, and

c00ðτÞ ¼ 1
cosh½γA1ðτÞA2ðτÞL�

;

s00ðτÞ ¼ tanh½γA1ðτÞA2ðτÞL�: (35)

Using the same pump waves described by Eqs. (29) and
(30), as in the CBS case, the pupil function becomes

s00ðτÞ ¼ tanh
�
θ00 exp

�
−

τ2

2ð ���
2

p
Df δωpÞ2

��
: (36)

The point-spread function p00ðτÞ is obtained, as before,
by the Fourier transform of this pupil function.

When θ00 ≪ π∕2, we approximate the hyperbolic tan-
gent function by the first order of approximation, which
is the same as for the CBS time lens, with the pupil func-
tion being proportional to pump amplitude profile. Thus,
their temporal resolutions are the same.
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Unlike the two previous time lenses, the CPBS time lens
has the property that its conversion efficiency approaches
the unity monotonously with θ00 and not in the oscillating
fashion. Another important difference with respect to the
SFG and CBS lenses is that increasing the parameter θ00 to
the values higher than π∕2 the pupil function becomes
highly non-Gaussian due to the particular form of nonlin-
ear relationship between the pump profile and the pupil
function. This non-Gaussian nature of the pupil function
is exemplified in Fig. 3, where we show the pupil function
s00ðτÞ for θ00 ¼ 5 and θ00 ¼ 25. These two values serve no
other purpose than to show the influence of growing θ00
on the pupil function. One can see that with growing θ00
the pupil function acquires a flat-top plateau around its
maximum with the growing width. Since the point-spread
function is given by the Fourier transform of the pupil
function, its width is decreasing with θ00, which results
in the improvement of resolution.
For θ00 ≥ π∕2, we cannot analytically obtain the Fourier

transform of the pupil function. In this case, we numeri-
cally investigate the properties of s00ðτÞ and the point-
spread function p00ðτÞ. For the typical value of θ0 ¼ π∕2,
we evaluate the resolution as

R ≈
1.47
δωp

: (37)

Taking as example of higher values of θ00, θ
0
0 ¼ 25, we

obtain the resolution

R ≈
0.93
δωp

; (38)

which represents 80% improvement over the value for
θ00 ≪ π∕2. Since θ00 is proportional to the intensity of
the pump wave, this result offers an interesting experi-
mental possibility of improving the resolution in temporal
imaging by increasing the intensity of the pump wave. To
our knowledge, this possibility of resolution improvement

in temporal imaging has not been discussed yet in the
literature.

Temporal imaging shares many features with conven-
tional spatial imaging due to the space–time analogy.
However, there are also some important differences. In this
Letter, we have indicated one of them. Precisely, we have
pointed out a nonlinear relationship between the pupil
function and the temporal profile of the pump in temporal
imaging based on nonlinear optical schemes such as SFG
and FWM. This nonlinear relationship offers interesting
possibilities for the point-spread function engineering in
temporal imaging, which has no equivalence in its spatial
counterpart. Indeed, since the pupil and point-spread
functions in spatial imaging are described by linear optics,
such a possibility does not exist. Therefore, compared to
the point-spread function engineering in spatial imaging
with the goal of apodization or super-resolution, temporal
imaging offers more possibilities.

In this Letter, we have demonstrated that this nonlinear
relationship between the temporal profile of the pump
wave and the pupil function of the imaging system can
be used for improving its temporal resolution. Comparing
three temporal lenses based on SFG, co-propagating
FWM and counter-propagating FWM, we have shown
that the last scheme offers the best resolution due to its
particular nonlinear relationship between the pump-wave
profile and the pupil function. We have demonstrated that
for realistic physical parameters one can achieve 80% of
the resolution improvement. This conclusion holds for
both quantum and classical temporal imaging. To the best
of our knowledge, this possibility of resolution improve-
ment has not been discussed yet in the literature on tem-
poral imaging, and we are certain that it offers many
potential applications, since resolution is the key issue
for any imaging system.
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