• Journal of Semiconductors
  • Vol. 40, Issue 7, 071905 (2019)
Zhe He1, Jiawei Yang2, Lidan Zhou2, Yan Chen3, Tianming Zhao1, Ying Yu2, and Jin Liu1
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
  • 2State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 3Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, Dresden 01069, Germany
  • show less
    DOI: 10.1088/1674-4926/40/7/071905 Cite this Article
    Zhe He, Jiawei Yang, Lidan Zhou, Yan Chen, Tianming Zhao, Ying Yu, Jin Liu. Broadband photonic structures for quantum light sources[J]. Journal of Semiconductors, 2019, 40(7): 071905 Copy Citation Text show less
    References

    [1] D Huber, M Reindl, l J Aberl et al. Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review. J Opt, 20, 073002(2018).

    [2] Y M He, e Y He, i Y J Wei et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotechnol, 8, 213(2013).

    [3] J Liu, u R Su, i Y Wei et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat Nanotechnol, 14, 586(2019).

    [4] P Senellart, n G Solomon, A White. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 12, 1026(2017).

    [5] L Hanschke, r K A Fischer, S Appel et al. Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Inform, 4, 43(2018).

    [6] S Kolatschek, S Hepp, M Sartison et al. Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography. J Appl Phys, 125, 045701(2019).

    [7] M Davanço, M T Rakher, D Schuh et al. A circular dielectric grating for vertical extraction of single quantum dot emission. Appl Phys Lett, 99, 041102(2011).

    [8] W L Barnes, G Björk, J M Gérard et al. Solid-state single photon sources: light collection strategies. Eur Phys J D, 18, 197(2002).

    [9] K Srinivasan, M Borselli, n T J Johnson et al. Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots. Appl Phys Lett, 86, 151106(2005).

    [10] K Srinivasan, O Painter. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature, 450, 862(2007).

    [11] T Zhou, M Tang, G Xiang et al. Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates. Optica, 6, 430(2019).

    [12] P Michler, A Kiraz, C Becher et al. A quantum dot single-photon turnstile device. Science, 290, 2282(2000).

    [13] S Liu, Y Wei, R Su et al. A deterministic quantum dot micropillar single photon source with > 65% extraction efficiency based on fluorescence imaging method. Sci Rep, 7, 13986(2017).

    [14] C Böckler, S Reitzenstein, C Kistner et al. Electrically driven high-Q quantum dot-micropillar cavities. Appl Phys Lett, 92, 091107(2008).

    [15] T Heindel, C Schneider, M Lermer et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett, 96, 011107(2010).

    [16] C Schneider, P Gold, S Reitzenstein et al. Quantum dot micropillar cavities with quality factors exceeding 250,000. Appl Phys B, 122, 19(2016).

    [17] N Somaschi, V Giesz, L De Santis et al. Near-optimal single-photon sources in the solid state. Nat Photonics, 10, 340(2016).

    [18] H Wang, n Z C Duan, i Y H Li et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys Rev Lett, 116, 213601(2016).

    [19] B Ellis, r M A Mayer, G Shambat et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat Photonics, 5, 297(2011).

    [20] Y Gong, B Ellis, G Shambat et al. Nanobeam photonic crystal cavity quantum dot laser. Opt Express, 18, 8781(2010).

    [21] J Vučković, Y Yamamoto. Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot. Appl Phys Lett, 82, 2374(2003).

    [22] K J Hennessy, C P Reese, A Badolato et al. High-Q photonic crystal cavities with embedded quantum dots. Proc SPIE, 5359, 210(2004).

    [23] Y Song, M Liu, Y Zhang et al. High-Q photonic crystal slab nanocavity with an asymmetric nanohole in the center for QED. J Opt Soc Am B, 28, 265(2011).

    [24] D Englund, D Fattal, E Waks et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys Rev Lett, 95, 013904(2005).

    [25] K Hennessy, A Badolato, M Winger et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 445, 896(2007).

    [26] D J P Ellis, n R M Stevenson, g R J Young et al. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing. Appl Phys Lett, 90, 011907(2007).

    [27] W Heller, U Bockelmann, G Abstreiter. Electric-field effects on excitons in quantum dots. Phys Rev B, 57, 6270(1998).

    [28] A J Bennett, y M A Pooley, n R M Stevenson et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat Physics, 6, 947(2010).

    [29] F Schäffler. High-mobility Si and Ge structures. Semicond Sci Technol, 12, 1515(1997).

    [30] C Y Hung, T E Schlesinger, d M L Reed. Piezoelectrically induced stress tuning of electro-optic devices. Appl Phys Lett, 59, 3598(1991).

    [31] F Ding, R Singh, f J D Plumhof et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Phys Rev Lett, 104, 067405(2010).

    [32]

    [33] I Friedler, C Sauvan, n J P Hugonin et al. Solid-state single photon sources: the nanowire antenna. Opt Express, 17, 2095(2009).

    [34] J Bleuse, J Claudon, M Creasey et al. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys Rev Lett, 106, 103601(2011).

    [35] I Friedler, P Lalanne, J P Hugonin et al. Efficient photonic mirrors for semiconductor nanowires. Opt Lett, 33, 2635(2008).

    [36] N Gregersen, n T R Nielsen, J Claudon et al. Controlling the emission profile of a nanowire with a conical taper. Opt Lett, 33, 1693(2008).

    [37] J Claudon, N Gregersen, P Lalanne et al. Harnessing light with photonic nanowires: fundamentals and applications to quantum optics. ChemPhysChem, 14, 2393(2013).

    [38] P Stepanov, a A Delga, N Gregersen et al. Highly directive and Gaussian far-field emission from " giant” photonic trumpets. Appl Phys Lett, 107, 141106(2015).

    [39] G Bulgarini, r M E Reimer, k M B Bavinck et al. Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. Nano Lett, 14, 4102(2014).

    [40] N Gregersen, D P S McCutcheon, J Mørk et al. A broadband tapered nanocavity for efficient nonclassical light emission. Opt Express, 24, 20904(2016).

    [41] T Mårtensson, P Carlberg, M Borgström et al. Nanowire arrays defined by nanoimprint lithography. Nano Lett, 4, 699(2004).

    [42] R S Wagner, s W C Ellis. Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett, 4, 89(1964).

    [43] T Mårtensson, M Borgström, W Seifert et al. Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth. Nanotechnology, 14, 1255(2003).

    [44] Q Gao, D Saxena, F Wang et al. Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. Nano Lett, 14, 5206(2014).

    [45] J Claudon, J Bleuse, k N S Malik et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat Photonics, 4, 174(2010).

    [46] M Munsch, k N S Malik, E Dupuy et al. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a gaussian optical beam. Phys Rev Lett, 110, 177402(2013).

    [47] D Cadeddu, J Teissier, n F R Braakman et al. A fiber-coupled quantum-dot on a photonic tip. Appl Phys Lett, 108, 011112(2016).

    [48] I Yeo, P L de Assis, A Gloppe et al. Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system. Nat Nanotechnol, 9, 106(2013).

    [49] M Munsch, n A V Kuhlmann, D Cadeddu et al. Resonant driving of a single photon emitter embedded in a mechanical oscillator. Nat Commun, 8, 76(2017).

    [50] S A Fortuna, X Li. Metal-catalyzed semiconductor nanowires: a review on the control of growth directions. Semicond Sci Technol, 25, 024005(2010).

    [51] M E Reimer, G Bulgarini, N Akopian et al. Bright single-photon sources in bottom-up tailored nanowires. Nat Commun, 3, 737(2012).

    [52] R Singh, G Bester. Nanowire quantum dots as an ideal source of entangled photon pairs. Phys Rev Lett, 103, 063601(2009).

    [53] T Huber, A Predojević, M Khoshnegar et al. Polarization entangled photons from quantum dots embedded in nanowires. Nano Lett, 14, 7107(2014).

    [54] M A M Versteegh, M E Reimer, K D Jöns et al. Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat Commun, 5, 5298(2014).

    [55] Y Chen, I E Zadeh, Jöns K D et al. Controlling the exciton energy of a nanowire quantum dot by strain fields. Appl Phys Lett, 108, 182103(2016).

    [56] P Stepanov, M Elzo-Aizarna, J Bleuse et al. Large and uniform optical emission shifts in quantum dots strained along their growth axis. Nano Lett, 16, 3215(2016).

    [57] G Sallen, A Tribu, T Aichele et al. Subnanosecond spectral diffusion of a single quantum dot in a nanowire. Phys Rev B, 84, 041405(2011).

    [58] M Holmes, S Kako, K Choi et al. Spectral diffusion and its influence on the emission linewidths of site-controlled GaN nanowire quantum dots. Phys Rev B, 92, 115447(2015).

    [59] M E Reimer, G Bulgarini, A Fognini et al. Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire. Phys Rev B, 93, 195316(2016).

    [60] I Yeo, k N S Malik, M Munsch et al. Surface effects in a semiconductor photonic nanowire and spectral stability of an embedded single quantum dot. Appl Phys Lett, 99, 233106(2011).

    [61] C C Chang, i C Y Chi, M Yao et al. Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett, 12, 4484(2012).

    [62] M Müller, S Bounouar, K D Jöns et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photonics, 8, 224(2014).

    [63] H Jayakumar, A Predojević, T Huber et al. Deterministic photon pairs and coherent optical control of a single quantum dot. Phys Rev Lett, 110, 135505(2013).

    [64] A V Kuhlmann, l J H Prechtel, J Houel et al. Transform-limited single photons from a single quantum dot. Nat Commun, 6, 8204(2015).

    [65] V S C M Rao, S Hughes. Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient " on chip” single photon gun. Phys Rev Lett, 99, 193901(2007).

    [66] T Lund-Hansen, S Stobbe, B Julsgaard et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys Rev Lett, 101, 113903(2008).

    [67] A Laucht, S Pütz, T Günthner et al. A waveguide-coupled on-chip single-photon source. Phys Rev X, 2, 011014(2012).

    [68] M Arcari, I Söllner, A Javadi et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys Rev Lett, 113, 093603(2014).

    [69] R S Daveau, K C Balram, T Pregnolato et al. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica, 4, 178(2017).

    [70] Y Chen, M Zopf, R Keil et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 9, 2994(2018).

    [71] M Gschrey, A Thoma, P Schnauber et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat Commun, 6, 7662(2015).

    [72] S Fischbach, A Kaganskiy, r E B Y Tauscher et al. Efficient single-photon source based on a deterministically fabricated single quantum dot-microstructure with backside gold mirror. Appl Phys Lett, 111, 011106(2017).

    [73] S Fischbach, A Schlehahn, A Thoma et al. Single quantum dot with microlens and 3D-printed micro-objective as integrated bright single-photon source. ACS Photonics, 4, 1327(2017).

    [74] A W Schell, J Kaschke, J Fischer et al. Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures. Sci Rep, 3, 1577(2013).

    [75] T Gissibl, S Thiele, A Herkommer et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat Photonics, 10, 554(2016).

    [76] D Huber, M Reindl, Y Huo et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat Commun, 8, 15506(2017).

    [77] L Sapienza, M Davanço, A Badolato et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat Commun, 6, 7833(2015).

    [78] H Wang, H Hu, g T H Chung et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys Rev Lett, 122, 113602(2019).

    Zhe He, Jiawei Yang, Lidan Zhou, Yan Chen, Tianming Zhao, Ying Yu, Jin Liu. Broadband photonic structures for quantum light sources[J]. Journal of Semiconductors, 2019, 40(7): 071905
    Download Citation