• Advanced Photonics
  • Vol. 2, Issue 6, 065001 (2020)
Mengyun Hu1、2, Junsong Peng1、2, Sheng Niu1, and Heping Zeng1、2、3、*
Author Affiliations
  • 1East China Normal University, State Key Laboratory of Precision Spectroscopy, Shanghai, China
  • 2Chongqing Institute of East China Normal University, Chongqing, China
  • 3Jinan Institute of Quantum Technology, Jinan, China
  • show less
    DOI: 10.1117/1.AP.2.6.065001 Cite this Article Set citation alerts
    Mengyun Hu, Junsong Peng, Sheng Niu, Heping Zeng. Plasma-grating-induced breakdown spectroscopy[J]. Advanced Photonics, 2020, 2(6): 065001 Copy Citation Text show less
    References

    [1] C. López-Moreno et al. Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces. J. Anal. At. Spectrom., 21, 55-60(2006).

    [2] D. W. Hahn, N. Omenetto. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc., 66, 347-419(2012).

    [3] A. K. Shaik et al. Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis. Opt. Express, 26, 8069-8083(2018).

    [4] A. K. Shaik, Ajmathulla, V. R. Soma. Discrimination of bimetallic alloy targets using femtosecond filament-induced breakdown spectroscopy in standoff mode. Opt. Lett., 43, 3465-3468(2018).

    [5] G. Arca et al. Trace element analysis in water by the laser-induced breakdown spectroscopy technique. Appl. Spectrosc., 51, 1102-1105(1997).

    [6] V. Lazic, S. Jovićević. Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects. Spectrochim. Acta, Part B, 101, 288-311(2014).

    [7] Y. Tian et al. Non-gated laser-induced breakdown spectroscopy in bulk water by position-selective detection. Appl. Phys. Lett., 107, 111107(2015).

    [8] S. Niu et al. Laser-induced breakdown spectroscopic detection of trace level heavy metal in solutions on a laser-pretreated metallic target. Talanta, 179, 312-317(2018).

    [9] C. Haisch et al. Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS). Fresenius J. Anal. Chem., 356, 21-26(1996).

    [10] V. Sturm, R. Noll. Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N2. Appl. Opt., 42, 6221-6225(2003). https://doi.org/10.1364/AO.42.006221

    [11] K. L. Eland et al. Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation. Appl. Spectrosc., 55, 286-291(2001).

    [12] B. N. Chichkov et al. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A, 63, 109-115(1996).

    [13] V. Margetic et al. A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples. Spectrochim. Acta, Part B, 55, 1771-1785(2000).

    [14] D. J. Hwang et al. Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film. Appl. Phys. Lett., 91, 251118(2007).

    [15] G. G. Arantes de Carvalho et al. Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy. Anal. Chim. Acta, 876, 26-38(2015).

    [16] H. L. Xu et al. Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane. Appl. Phys. B, 82, 655-658(2006).

    [17] K. Stelmaszczyk et al. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Appl. Phys. Lett., 85, 3977-3979(2004).

    [18] A. Couairon, A. Mysyrowicz. Femtosecond filamentation in transparent media. Phys. Rep., 441, 47-189(2007).

    [19] S. L. Chin et al. Advances in intense femtosecond laser filamentation in air. Laser Phys., 22, 1-53(2012).

    [20] A. Braun et al. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett., 20, 73-75(1995).

    [21] S. S. Harilal et al. Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas. J. Anal. At. Spectrom., 31, 1192-1197(2016).

    [22] S. S. Harilal et al. Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy. Opt. Express, 24, 17941-17949(2016).

    [23] F. Théberge et al. Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing. Phys. Rev. E, 74, 036406(2006).

    [24] S. Eisenmann, A. Pukhov, A. Zigler. Fine structure of a laser-plasma filament in air. Phys. Rev. Lett., 98, 155002(2007).

    [25] Y. H. Chen et al. Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments. Phys. Rev. Lett., 105, 215005(2010).

    [26] P. P. Kiran et al. Filamentation without intensity clamping. Opt. Express, 18, 21504-21510(2010).

    [27] H. Wu et al. Background-free third-order harmonic generation induced by dynamic gratings in dual filaments. J. Opt. Soc. Am. B, 26, 645-649(2009).

    [28] X. Yang et al. Plasma waveguide array induced by filament interaction. Opt. Lett., 34, 3806-3808(2009).

    [29] X. Yang et al. Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air. Appl. Phys. Lett., 97, 071108(2010).

    [30] S. Suntsov et al. Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications. Appl. Phys. Lett., 94, 251104(2009).

    [31] L. Shi et al. Generation of high-density electrons based on plasma grating induced Bragg diffraction in air. Phys. Rev. Lett., 107, 095004(2011).

    [32] A. C. Bernstein et al. Two-beam coupling between filament-forming beams in air. Phys. Rev. Lett., 102, 123902(2009).

    [33] C. Ng et al. Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength on plasma properties. Appl. Spectrosc., 51, 976-983(1997).

    [34] L. Zheng et al. Comparative study of the matrix effect in Cl analysis with laser-induced breakdown spectroscopy in a pellet or in a dried solution layer on a metallic target. Spectrochim. Acta, Part B, 118, 66-71(2016).

    Mengyun Hu, Junsong Peng, Sheng Niu, Heping Zeng. Plasma-grating-induced breakdown spectroscopy[J]. Advanced Photonics, 2020, 2(6): 065001
    Download Citation