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Abstract. Laser-induced breakdown spectroscopy (LIBS) is a useful tool for determination of elements in
solids, liquids, and gases. For nanosecond LIBS (ns-LIBS), the plasma shielding effect limits its reproducibility,
repeatability, and signal-to-noise ratios. Although femtosecond laser filament induced breakdown spectros-
copy (FIBS) has no plasma shielding effects, the power density clamping inside the filaments limits the
measurement sensitivity. We propose and demonstrate plasma-grating-induced breakdown spectroscopy
(GIBS). The technique relies on a plasma excitation source—a plasma grating generated by the interference of
two noncollinear femtosecond filaments. We demonstrate that GIBS can overcome the limitations of standard
techniques such as ns-LIBS and FIBS. Signal intensity enhancement with GIBS is observed to be greater
than 3 times that of FIBS. The matrix effect is also significantly reduced with GIBS, by virtue of the high power
and electron density of the plasma grating, demonstrating great potential for analyzing samples with complex
matrix.

Keywords: femtosecond filament; plasma grating induced breakdown spectroscopy; high power and electron density;
enhancement; matrix effect.

Received May 9, 2020; accepted for publication Sep. 22, 2020; published online Oct. 21, 2020.

© The Authors. Published by SPIE and CLP under a Creative Commons Attribution 4.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

[DOI: 10.1117/1.AP.2.6.065001]

1 Introduction
Laser-induced breakdown spectroscopy (LIBS) is one of the
most effective tools used to study the interaction between
lasers and matter. Compared with other techniques, like atomic
absorption spectroscopy and inductively coupled plasma
optical emission spectroscopy, LIBS has some unique
advantages including the capacity of direct analysis without
a complex pretreatment of the sample, rapid response, and
multiple elemental analysis ability. LIBS is suitable for
special requirements of practical solid,1–4 liquid,5–8 and gas
analyses.9,10

For traditional LIBS systems, nanosecond (ns) pulse lasers
are widely used. But due to some adverse impacts like laser
emission intensity, long pulse duration, and plasma shielding
effect,11 the ns-LIBS has drawbacks, including low reproducibil-
ity and repeatability, low signal-to-noise ratios, and difficult
molecular measurements. In contrast, the pulse duration of fem-
tosecond lasers is much shorter, such that there is no plasma
shielding effect and the interaction time of laser and matter
is very short. Therefore, signal-to-background ratios and

resolutions of spectral lines are higher.12,13 Meanwhile, because
of the high power density, materials could be ionized and dis-
sociated quickly, and thus the ions and molecular fragments
could be stimulated effectively.14–16

Filament-induced breakdown spectroscopy (FIBS) com-
bines the LIBS technique and a femtosecond laser filament. 17

When a high-intensity femtosecond laser pulse transmits in the
air, due to the dynamic balance between the self-focusing of
the Kerr effect and the defocusing of the plasma formed by
multiphoton ionization, a long and stable laser plasma channel
forms, i.e., a femtosecond (fs) laser filament.18–20 In addition to
the advantages of the fs laser pulse, FIBS can overcome the
diffraction limit and deliver high laser intensities at remote
locations.17 Systematical comparative investigations on LIBS
using ns and fs pulses, as well as filaments under different
conditions, were recently reported.21,22 The laser intensity
clamping effect is a limitation of FIBS,23–26 as the power
and electron densities are saturated when the laser energy in-
creases. This imposes a limitation on the sensitivity improve-
ment. The interaction of multiple femtosecond filaments
could generate plasma gratings27–32 and can break through
the clamped intensity limit for free electron generation and
acceleration.33*Address all correspondence to Heping Zeng, E-mail: hpzeng@phy.ecnu.edu.cn
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In this work, we propose and demonstrate the plasma-
grating-induced breakdown spectroscopy (GIBS) technique.
The plasma grating is generated by two noncollinear femto-
second filaments. GIBS is proven to be useful to overcome
the drawbacks of ns-LIBS, fs-LIBS, and FIBS. With GIBS, the
signal intensity enhancement is greater than 3 times that ob-
tained by FIBS with the same initial pulse. The plasma evolution
is studied, and the lifetime of plasma-grating-induced plasma is
found to be about twice that of filament-induced plasma. Due to
the absence of plasma shielding effects, the high power, and
electron density of the femtosecond plasma grating, materials
could be ionized and dissociated in a more uniform manner
so that the matrix effect is reduced and quantitative analyses
are feasible.

2 Experimental Details

2.1 Experimental Setup

Our experimental schematic is shown in Fig. 1. Intense fs pulses
were generated from a Ti:sapphire regenerative laser (Coherent)
operating at 800 nm with a repetition rate of 1 kHz, a pulse du-
ration of 50 fs, and a pulse energy up to 6 mJ. The fs laser pulses
were split into two beams with almost the same energy, which
were simultaneously focused by a convex lens (f ¼ 100 mm) to
produce two noncollinearly crossed filaments in air. The cross-
ing angle θ of two filaments is 6.1 deg, resulting in spatial period
Λ of 7.5 μm determined by Λ ¼ λ∕2 sinðθ∕2Þ.34 The plasma
grating was generated in the intersecting region of the two
filaments and then ablated sample pellets to induce the plasma
emission. If one beam is blocked, this would become the fs
filament-induced plasma. Sample pellets were mounted on a
motorized rotation displacement stage. The plasma emission
was collected by a focus lens into a piece of optical fiber
with a diameter of 50 μm. The fiber delivered the plasma
emission into an Echelle spectrometer (Mechelle 5000, Andor
Technology) equipped with an intensified charge coupled de-
vice (ICCD; iStar, Andor Technology). The acquisition mode
was a single scan and the ICCD worked in the integrate-on-chip
mode with gate delay of 4 ns and gate width of 100 ns.

2.2 Sample Preparation

Five standard reference soil samples (GSS-08, GSS-04, GSS-
03, GSS-20, and GSF-03) were used for the present study.
All soil samples were ground carefully in a mortar to become
homogeneous. Then 0.5 g of the obtained mixture powder was

filled into a steel dye of 13 mm diameter. A hydraulic press was
applied on the powder to obtain a pellet. The pressure of 4 MPa
and time of 1 min were used for all pellets. Prepared pellets were
then put on the motorized stage so that fresh materials could be
irradiated and ablated continuously.

3 Results and Discussion

3.1 Signal Enhancement of GIBS

Plasma gratings are generated due to the nonlinear interaction of
two filaments.30,32 The power density and electron density are
higher than a single fs filament with the same pulse energy
due to the constructive interference in the two-beam overlapping
area. In this section, the exposure time of the spectrometer is set
as 0.05 s, considering the pulse interval of 0.001 s of the 1 kHz
repetitive femtosecond pulses, which means that each spectrum
obtained under the integrate-on-chip mode is accumulated with
50 shots. Soil sample GSS-08 was used here. Figure 2(a) shows
the relationship between the intensity of the Si 288.2 nm spec-
tral line and the pulse energy. In Fig. 2(a), red circled points
represent the results obtained by the FIBS. It can be seen that
as the pulse energy increases, the signal intensity of Si tends to
be saturated due to power clamping of the fs filament. Black
squared points correspond to results measured by the GIBS.
The signal intensity of the Si line obtained by the GIBS is about
3 times higher than that obtained by the FIBS using the same
pulse energy. The two laser pulses used to form the plasma
grating were equally split from the same laser pulse forming
a single fs filament. The enhancement shown in Fig. 2(a) is
because the interference of two filaments breaks through the
clamped power of a single filament, so that the electron density
inside the plasma channel is higher. For a single filament, the
typical electron density is around 1017 cm−3, whereas for the
plasma grating, the electron density is determined to be more
than 1018 cm−3.31 As a result, inside the plasma grating, the
collision and acceleration of electrons are more intense. Some
accelerated electrons trigger impact ionization of molecules and
more electrons are generated, giving rise to the generation of
stronger plasma emission. Figure 2(b) exhibits the influence
of polarizations of the two synchronous pulses. If the polariza-
tions are parallel, the signal intensity is about twice as high as
that with perpendicular polarizations. This illustrates that the
interference of two filaments with the same polarization gener-
ates a stronger signal than the simple superposition of two
filaments with different polarizations.

Fig. 1 Experimental schematic. Top view of the noncollinear in-
teraction area where two filaments interfere and create a plasma
grating, with a focus lens collecting the plasma emission into the
spectrometer from the side direction after plasma grating ablating
the sample pellet.

Fig. 2 (a) Intensity of the Si 288.2 nm line as a function of the
laser pulse energy detected with the FIBS and GIBS systems.
(b) Intensity of the Si 288.2 nm line obtained by interaction of
two beams with different polarizations.
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3.2 Time Evolution of Induced Plasma

Based on the results described above, in order to better under-
stand the signal enhancement of the GIBS, we analyzed the
time evolution of the plasma emission from filament and
plasma grating ablation, respectively. Soil sample GSS-08
was used. The time evolutions of the intensities of four spectral
lines (Al 394.5 nm, Ca 393.4 nm, Mg 517.3 nm, and Si
288.2 nm) are shown in Fig. 3 depicting the evolution of the
corresponding plasma emission. Figures 3(a) and 3(b) depict
the time evolution of the spectral line intensities under the
filament and plasma grating conditions. The lifetime is the time
taken for the intensity to decay to 1/3 of its initial value.
In Fig. 3(a), the average lifetime of plasma calculated from
four selected spectral lines is 64 ns, whereas in Fig. 3(b) it is
132 ns. Nearly twice extension of the plasma lifetime demon-
strates that with the GIBS, the fluorescence emission of the
sample plasma lasts longer and within the same collection time,
the signal intensity is accumulated to a higher level. Also,
plasma emission is not the direct result of the laser ablation
and excitation, which should be due to a secondary process like
electron collisional excitation.33 This means that a longer plasma
lifetime corresponds to a higher electron density in the plasma
channel, which is also consistent with the results presented in
Sec. 3.1.

3.3 Reduction of Matrix Effect

In order to study the matrix effect, soil samples doped with a Cr
element of different concentrations were used as target samples.
The target elemental concentrations of these soil samples are
given in Table 1. We prepared soil sample powders with Cr
concentrations ranging from 68 to 4370 ppm.

First, we used the previous ns-LIBS experimental system de-
scribed in Refs. 8 and 34 to detect these soil samples. Figure 4(a)
depicts the average intensity of the Cr 425.43 nm line as a func-
tion of the Cr concentrations. Error bars correspond to the stan-
dard deviations of the six replicate measurements. Soil sample
GSS-04 was used as the reference sample to obtain a calibration
curve that was fitted with parabola (pink solid line) with a
regression coefficient R2 of 99.0%. As shown in Fig. 4(a), the
data points obtained from other soil samples exhibit a large
dispersion around the calibration curve, clearly showing a sig-
nificant matrix effect among these samples.

In order to quantitatively assess the matrix effect among
different samples, we calculated the average relative error of
prediction (REP) for other soil samples with respect to the
calibration curve of S3, as defined by

REPð%Þ ¼ 100

N

XN

i¼1

����
Ip − Ii

Ii

����; (1)

where N is the number of different concentrations prepared for a
validation sample, Ii is the measured line intensity of Cr, and Ip
is the corresponding predicted signal intensity retrieved from the
calibration curve with the prepared concentration. The value of
REP corresponds to the relative deviation between the actual
measured intensity and the predicted intensity, which means
the accuracy of predicted intensity calculated from calibration
curves with known elemental concentrations, as well as that
of the predicted concentration obtained from calibration curves
with the measured signal intensity. The obtained REPs for all the
validation samples range from 31.2% to 66.4%, which are ap-
parently larger than the standard deviations of data. It is obvious
that the calibration curve established with the S3 sample cannot
be used to correctly predict the chromium concentration for
most of the validation samples because of the matrix effect.

Figures 4(b)–4(d) show the relationship between the Cr spec-
tral line intensity and concentrations from different soil samples
ablated by the fs pulse (pulse energy 0.3 mJ), fs filament (pulse
energy 1.6 mJ), and fs plasma grating (two pulses with total
energy 1.6 mJ), respectively. Error bars for each data point

Fig. 3 Time evolution for intensities of four spectral lines (Al
394.5 nm, Ca 393.4 nm, Mg 517.3 nm, and Si 288.2 nm) detected
with (a) an FIBS and (b) a GIBS system.

Fig. 4 Intensity of the Cr 425.43 nm line as a function of the pre-
pared Cr concentration detected with (a) ns-LIBS, (b) fs-LIBS,
(c) FIBS, and (d) GIBS systems.

Table 1 Element concentrations of soil samples in the experi-
ment.

Sample
name

Element concentration

SiO2 (%) Al2O3 (%) CaO (%) MgO (%) Cr (ppm)

GSF-03 N.A. N.A. 1.06 N.A. 104

GSS-03 74.72 12.24 1.27 0.58 32

GSS-04 50.95 23.45 0.26 0.49 370

GSS-08 58.61 11.92 8.27 2.38 68

GSS-20 47.28 10.39 6.48 2.98 43

Note: N.A., not available.
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correspond to the standard deviations of 20 replicated measure-
ments. The dispersion of data points is much reduced compared
to that shown in Fig. 4(a), which means the matrix effect has
apparently been reduced. This should be due to the higher power
density of the fs pulse and the more absolute ablation of sam-
ples. From Figs. 4(c) and 4(d), we can see that data points of
different soil samples exhibit good linear distributions. In fact,
the data in both Figs. 4(c) and 4(d) can be linearly fitted with
regression coefficients of R2 ¼ 95.5% and 98.0%, respectively.
The linear calibration curves established with different soil sam-
ples can be used to correctly predict the elemental concentra-
tions of other soil samples detected with the same procedure.

For ns-LIBS, due to long pulse durations, there is a plasma
shielding effect,11 which refers to the fact that laser-induced
plasma absorbs part of incident laser energy and prevents the
efficient coupling between laser and matter, resulting in a
low utilization rate of laser energy. For different samples, the
constituents and opacity of plasma are different, so that plasma
of different samples will shield postpulse and subsequently
ablate the sample surface with different efficiencies and to dif-
ferent extents. Therefore, the spectral line intensity of the same
element in different samples would exhibit an inconsistent re-
lationship with respect to elemental concentrations. But for fs
laser pulse, before the plasma formation and other thermal re-
sponse, the interaction between the laser and matter has finished
and all the laser energy has already been deposited on the sam-
ple surface. There are no further effects or processes that impact
the plasma formation. Power density and electron density are
very high inside the fs filaments, and especially higher in the
fs plasma grating so that the sample pellets could be ablated.
As a result, FIBS and especially GIBS could overcome the ma-
trix effect effectively.

4 Conclusions
We used a plasma grating from the interference of two noncol-
linear fs filaments to ablate and detect sample pellets. The in-
teraction of two filaments leads to more intense electron
acceleration and collision so that the local electron density in-
side the plasma grating is higher than that obtained with a single
fs filament. The signal intensity of spectral lines detected by
GIBS is enhanced by more than 3 times that obtained from a
single FIBS system. The lifetime of grating-induced plasma
is apparently extended. Finally, we demonstrate that using the
GIBS technique, materials could be ionized and dissociated,
effectively leading to reduction of the matrix effect. The GIBS
technique could be a promising tool to detect samples hard to
melt, ionize, or dissociate, and samples with a complex matrix.
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