• Opto-Electronic Advances
  • Vol. 1, Issue 3, 180005 (2018)
Chih-Hsien Cheng1, Chih-Chiang Shen2, Hsuan-Yun Kao1, Dan-Hua Hsieh2, Huai-Yung Wang1, Yen-Wei Yeh2, Yun-Ting Lu2, Sung-Wen Huang Chen2, Cheng-Ting Tsai1, Yu-Chieh Chi1, Tsung Sheng Kao2, Chao-Hsin Wu1, Hao-Chung Kuo2, Po-Tsung Lee2, and Gong-Ru Lin1、3、*
Author Affiliations
  • 1Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University, Taipei 10617, China
  • 2Department of Photonics & Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30100, China
  • 3Department of Electrical Engineering, National Taiwan University, Taipei 10617, China
  • show less
    DOI: 10.29026/oea.2018.180005 Cite this Article
    Chih-Hsien Cheng, Chih-Chiang Shen, Hsuan-Yun Kao, Dan-Hua Hsieh, Huai-Yung Wang, Yen-Wei Yeh, Yun-Ting Lu, Sung-Wen Huang Chen, Cheng-Ting Tsai, Yu-Chieh Chi, Tsung Sheng Kao, Chao-Hsin Wu, Hao-Chung Kuo, Po-Tsung Lee, Gong-Ru Lin. 850/940-nm VCSEL for optical communication and 3D sensing[J]. Opto-Electronic Advances, 2018, 1(3): 180005 Copy Citation Text show less
    References

    [1] P Westbergh, J S Gustavsson, Å Haglund, M Skold, A Joel et al. High-speed, low-current-density 850 nm VCSELs. IEEE J Sel Top Quantum Electron, 15, 694-703(2009).

    [2] S B Healy, E P O'Reilly, J S Gustavsson, P Westbergh, Å Haglund et al. Active region design for high-speed 850-nm VCSELs. IEEE J Quantum Electron, 46, 506-512(2010).

    [3] K L Lear, A Mar, K D Choquette, S P Kilcoyne, Jr R P Schneider et al. High-frequency modulation of oxide-confined vertical cavity surface emitting lasers. Electron Lett, 32, 457-458(1996).

    [4] LearK LHietalaV MHouH QBanasJHammonsB EHigh-speed 850 nm oxide-confined vertical cavity surface emitting lasers. In Nuss M, Bowers J. Ultrafast Electronicsand Optoelectronics (Optical Society of America, Washington, DC, 1997).Lear K L, Hietala V M, Hou H Q, Banas J, Hammons B E et al. High-speed 850 nm oxide-confined vertical cavity surface emitting lasers. In Nuss M, Bowers J. Ultrafast Electronics and Optoelectronics (Optical Society of America, Washington, DC, 1997).

    [5] Y H Chang, H C Kuo, F I Lai, K F Tzeng, H C Yu et al. High speed (> 13 GHz) modulation of 850 nm vertical cavity surface emitting lasers (VCSELs) with tapered oxide confined layer. IEE Proc-Optoelectron, 152, 170-173(2005).

    [6] Y Ou, J S Gustavsson, P Westbergh, A Haglund, A Larsson et al. Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs. IEEE Photon Technol Lett, 21, 1840-1842(2009).

    [7] LiuMWangC YFengMHolonyakN50 Gb/s error-free data transmission of 850 nm oxide-confined VCSELs. In Optical Fiber Communication Conference 1-3 (Optical Society of America, 2016)Optical Fiber Communication Conference 1-3 (Optical Society of America, 2016); " target=_blank>http://doi.org/10.1364/OFC.2016.Tu3D.2. http://doi.org/10.1364/OFC.2016.Tu3D.2

    [8] TanigawaTOnishiTNagaiSUedaTHigh-speed 850 nm AlGaAs/GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique. In Conference on Lasers and Electro-Optics 1381- 1383 (IEEE, 2005)Conference on Lasers and Electro-Optics 1381- 1383 (IEEE, 2005); http://doi.org/10.1109/CLEO.2005.202132. http://doi.org/10.1109/CLEO.2005.202132

    [9] J W Shi, Z R Wei, K L Chi, J W Jiang, J M Wun et al. Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850 nm for short to medium reach (2 km) optical interconnects. J Lightwave Technol, 31, 4037-4044(2013).

    [10] MutigAPhysical processes in lasers and VCSEL design. In High Speed VCSELs for Optical Interconnects (Springer, Berlin, Heidelberg, 2011: 19-84)Mutig A. Physical processes in lasers and VCSEL design. In High Speed VCSELs for Optical Interconnects (Springer, Berlin, Heidelberg, 2011: 19-84).

    [11] A N Al-Omari, K L Lear. VCSELs with a self-aligned contact and copper-plated heatsink. IEEE Photon Technol Lett, 17, 1767-1769(2005).

    [12] A Larsson, P Westbergh, J Gustavsson, Å Haglund. High-speed low-current-density 850 nm VCSELs. Proc SPIE, 7615, 761505(2010).

    [13] A Gholami, D Molin, P Sillard. Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit Ethernet transmissions. IEEE Photon Technol Lett, 21, 645-647(2009).

    [14] S A Blokhin, J A Lott, A Mutig, G Fiol, N N Ledentsov et al. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s. Electron Lett, 45, 501-503(2009).

    [15] P Westbergh, J S Gustavsson, B Kögel, A Haglund, A Larsson et al. 40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL. Electron Lett, 46, 1014-1016(2010).

    [16] K Szczerba, P Westbergh, J Karout, J S Gustavsson, Å Haglund et al. 4-PAM for high-speed short-range optical communications. IEEE J Opt Commun Netw, 4, 885-894(2012).

    [17] K D Choquette, K M Geib, R D Briggs, A A Allerman, J J Hindi. Single transverse mode selectively oxidized vertical-cavity lasers. Proc SPIE, 3946, 230-233(2000).

    [18] Å Haglund, J S Gustavsson, J Vukŭsić, P Modh, A Larsson. Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief. IEEE Photon Technol Lett, 16, 368-370(2004).

    [19] A Furukawa, M Hoshi, S Sasaki, A Matsuzono, K Moritoh et al. High-power single-transverse-mode holey VCSELs (Invited Paper). Proc SPIE, 5722, 183-190(2005).

    [20] R Safaisini, K Szczerba, P Westbergh, E Haglund, B Kögel et al. High-speed 850 nm Quasi-single-mode VCSELs for extended-reach optical interconnects. IEEE J Opt Commun Netw, 5, 686-695(2013).

    [21] R Michalzik, K J Ebeling. Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes. IEEE J Quantum Electron, 31, 1371-1379(1995).

    [22] J S Gustavsson, A Haglund, J Bengtsson, P Modh, A Larsson. Dynamic behavior of fundamental-mode stabilized VCSELs using a shallow surface relief. IEEE J Quantum Electron, 40, 607-619(2004).

    [23] Y Liu, W C Ng, B Klein, K Hess. Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity surface-emitting lasers. IEEE J Quantum Electron, 39, 99-108(2003).

    [24] D Vakhshoori, J D Wynn, G J Zydzik, R E Leibenguth, M T Asom et al. Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies. Appl Phys Lett, 62, 1448-1450(1993).

    [25] M H MacDougal, J Geske, C K Lin, A E Bond, P D Dapkus. Low resistance intracavity-contacted oxide-aperture VCSELs. IEEE Photon Technol Lett, 10, 9-11(1998).

    [26] I Harrison, H P Ho, B Tuck, M Henini, O H Hughes. Zn diffusion-induced disorder in AlAs/GaAs superlattices. Semicond Sci Technol, 4, 841-846(1989).

    [27] Y J Yang, T G Dziura, T Bardin, S C Wang, R Fernandez. Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion. Electron Lett, 28, 274-276(1992).

    [28] J W Shi, C C Chen, Y S Wu, S H Guol, C Kuo et al. High-power and high-speed Zn-diffusion single fundamental-mode vertical-cavity surface-emitting lasers at 850-nm wavelength. IEEE Photon Technol Lett, 20, 1121-1123(2008).

    [29] H Y Kao, Y C Chi, C Y Peng, S F Leong, C K Chang et al. Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF. IEEE J Quantum Electron, 53, 8000408(2017).

    [30] P Westbergh, R Safaisini, E Haglund, B Kögel, J S Gustavsson et al. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s. Elect Lett, 48, 1145-1147(2012).

    [31] P Westbergh, R Safaisini, E Haglund, J S Gustavsson, A Larsson et al. High-speed oxide confined 850-nm VCSELs operating error-free at 40 Gb/s up to 85oC. IEEE Photon Technol Lett, 25, 768-771(2013).

    [32] K L Chi, Y X Shi, X N Chen, J Chen, Y J Yang et al. Single-mode 850-nm VCSELs for 54-Gb/s ON-OFF keying transmission over 1-km multi-mode fiber. IEEE Photon Technol Lett, 28, 1367-1370(2016).

    [33] K Szczerba, P Westbergh, E Agrell, M Karlsson, P A Andrekson et al. Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links. J Lightwave Technol, 31, 3525-3534(2013).

    [34] BreyerFLee SC JRandelSHanikNComparison of OOK- and PAM-4 modulation for 10 Gbit/s transmission over up to 300 m polymer optical fiber. In Optical Fiber Communication/National Fiber Optic Engineers Conference 1-3 (IEEE, 2008)Optical Fiber Communication/National Fiber Optic Engineers Conference 1-3 (IEEE, 2008); http://doi.org/10.1109/OFC.2008.4528669. http://doi.org/10.1109/OFC.2008.4528669

    [35] InghamJ DPentyR VWhiteI HWestberghPGustavssonJ S32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation data communication standards. In Conference on Lasers and Electro-Optics 1-2 (IEEE, 2011)et al. 32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation data communication standards. In Conference on Lasers and Electro-Optics 1-2 (IEEE, 2011); http://doi.org/10.1364/CLEO_SI.2011.CWJ2. http://doi.org/10.1364/CLEO_SI.2011.CWJ2

    [36] K Szczerba, P Westbergh, M Karlsson, P A Andrekson, A Larsson. 60 Gbits error-free 4-PAM operation with 850 nm VCSEL. Elect Lett, 49, 953-955(2015).

    [37] CastroJ MPimpinellaRKoseBHuangYLaneB200m 2×50 Gb/s PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signaling. In Optical Fiber Communications Conference and Exhibition (OFC) 1-3 (IEEE, 2016)et al. 200m 250 Gb/s PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signaling. In Optical Fiber Communications Conference and Exhibition (OFC) 1-3 (IEEE, 2016); http://doi.org/10.1364/OFC.2015.W1D.1. http://doi.org/10.1364/OFC.2015.W1D.1

    [38] Motaghiannezam SM RLyubomirskyIDaghighianHKocotCGrayT180 Gbps PAM4 VCSEL transmission over 300 m wideband OM4 fibre. In Optical Fiber Communications Conference and Exhibition (OFC) 1-3 (IEEE, 2016)et al. 180 Gbps PAM4 VCSEL transmission over 300 m wideband OM4 fibre. In Optical Fiber Communications Conference and Exhibition (OFC) 1-3 (IEEE, 2016); http://doi.org/10.1364/OFC.2016.Th3G.2. http://doi.org/10.1364/OFC.2016.Th3G.2

    [39] LavrencikJVarugheseSThomasV ALandryGSunY100Gbps PAM-4 transmission over 100m OM4 and wideband fiber using 850nm VCSELs. In 42nd European Conference on Optical Communication 1-3 (IEEE, 2016)Lavrencik J, Varughese S, Thomas V A, Landry G, Sun Y et al. 100Gbps PAM-4 transmission over 100m OM4 and wideband fiber using 850nm VCSELs. In 42nd European Conference on Optical Communication 1-3 (IEEE, 2016).

    [40] KaoH YTsaiC TLeongS FPengC YChiY C Single-mode VCSEL for pre-emphasis PAM-4 transmission up to 64 Gbit/s over 100-300 m in OM4 MMF. Photon Res. Accepted 17 Dec 2017. Doc. ID: 312994.Kao H Y, Tsai C T, Leong S F, Peng C Y, Chi Y C et al. Single-mode VCSEL for pre-emphasis PAM-4 transmission up to 64 Gbit/s over 100-300 m in OM4 MMF. Photon Res. Accepted 17 Dec 2017. Doc. ID: 312994.

    [41] F Karinou, L Deng, R R Lopez, K Prince, J B Jensen et al. Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects. Opt Fiber Technol, 19, 206-212(2013).

    [42] Y C Chi, Y C Li, H Y Wang, P C Peng, H H Lu et al. Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode. Opt Express, 20, 20071-20077(2012).

    [43] C Y Lin, Y C Chi, C T Tsai, H Y Wang, G R Lin. 39-GHz millimeter-wave carrier generation in dual-mode colorless laser diode for OFDM-MMWoF transmission. IEEE J Sel Top Quantum Electron, 21, 1801810(2015).

    [44] S C J Lee, S Randel, F Breyer, A M J Koonen. PAM-DMT for intensity-modulated and direct-detection optical communication systems. IEEE Photon Technol Lett, 21, 1749-1751(2009).

    [45] D J F Barros, S K Wilson, J M Kahn. Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links. IEEE Trans Commun, 60, 153-162(2012).

    [46] I C Lu, C C Wei, H Y Chen, K Z Chen, C H Huang et al. Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber. IEEE J Sel Top Quantum Electron, 21, 1701009(2015).

    [47] PuertaRAgustinMChorchosLToήskiJKroppJ R107. 5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber. In Optical Fiber Communications Conference and Exhibition (OFC) 1-3 (IEEE, 2016)et al. 107. 5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber. In Optical Fiber Communications Conference and Exhibition (OFC) 1-3 (IEEE, 2016); http://doi.org/10.1364/OFC.2016.Th5B.5. http://doi.org/10.1364/OFC.2016.Th5B.5

    [48] C T Tsai, C Y Peng, C Y Wu, S F Leong, H Y Kao et al. Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber. IEEE J Quantum Electron, 53, 2400608(2017).

    [49] KaoH YTsaiC TLeongS FPengC YChiY C Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission. Opt Express25, 16347-16363 (2017)Kao H Y, Tsai C T, Leong S F, Peng C Y, Chi Y C et al. Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission. Opt Express 25, 16347-16363 (2017).

    [50] H Y Kao, Y C Chi, C T Tsai, S F Leong, C Y Peng et al. Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber. Photon Res, 5, 507-515(2017).

    [51] X D Gu, T Shimada, A Fuchida, A Matsutani, A Imamura et al. Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier. Appl Phys Lett, 99, 211107(2011).

    [52] F Koyama, X D Gu. Beam steering, beam shaping, and intensity modulation based on VCSEL photonics. IEEE J Sel Top Quantum Electron, 19, 1701510(2013).

    [53] J Sun, E Timurdogan, A Yaacobi, E S Hosseini, M R Watts. Large-scale nanophotonic phased array. Nature, 493, 195-199(2013).

    [54] C T DeRose, R D Kekatpure, D C Trotter, A Starbuck, J R Wendt et al. Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas. Opt Express, 21, 5198-5208(2013).

    [55] J C Hulme, J K Doylend, M J R Heck, J D Peters, M L Davenport et al. Fully integrated hybrid silicon two dimensional beam scanner. Opt Express, 23, 5861-5874(2015).

    Chih-Hsien Cheng, Chih-Chiang Shen, Hsuan-Yun Kao, Dan-Hua Hsieh, Huai-Yung Wang, Yen-Wei Yeh, Yun-Ting Lu, Sung-Wen Huang Chen, Cheng-Ting Tsai, Yu-Chieh Chi, Tsung Sheng Kao, Chao-Hsin Wu, Hao-Chung Kuo, Po-Tsung Lee, Gong-Ru Lin. 850/940-nm VCSEL for optical communication and 3D sensing[J]. Opto-Electronic Advances, 2018, 1(3): 180005
    Download Citation