• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011022 (2021)
Rongxin Geng1、2、3, Hao Li1、2、4、*, Jia Huang1、2, Peng Hu1、2、3, You Xiao1、2、3, Huiqin Yu1、2, and Lixing You1、2、**
Author Affiliations
  • 1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
  • 2Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai, 200050, China
  • 3University of Chinese Academy of Sciences, Beijing, 100049, China
  • 4Key Laboratory of Space Active Opto-Electronics Technology,Chinese Academy of Sciences, Shanghai, 200050, China
  • show less
    DOI: 10.3788/LOP202158.1011022 Cite this Article Set citation alerts
    Rongxin Geng, Hao Li, Jia Huang, Peng Hu, You Xiao, Huiqin Yu, Lixing You. Self-Aligned Superconducting Nanowire Single Photon Detector[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011022 Copy Citation Text show less
    References

    [1] You L X. Recent progress on superconducting nanowire single photon detector[J]. Scientia Sinica (Informationis), 44, 370-388(2014).

    [2] Gol’tsman G N, Okunev O, Chulkova G et al. Picosecond superconducting single-photon optical detector[J]. Applied Physics Letters, 79, 705-707(2001).

    [3] Yang X G, Liu Y, Lei H X et al. An organic-inorganic broadband photodetector based on a single polyaniline nanowire doped with quantum dots[J]. Nanoscale, 8, 15529-15537(2016).

    [4] Yao N, Yao Q, Xie X P et al. Optimizing up-conversion single-photon detectors for quantum key distribution[J]. Optics Express, 28, 25123-25133(2020).

    [5] Liu Y X, Fan Q, Li X Y et al. Realization of silicon single-photon detector with ultra-low dark count rate[J]. Acta Optica Sinica, 40, 1004001(2020).

    [6] Zhao C J, Li G H, Han Y et al. Research progress in junction type organic photodetectors[J]. Laser & Optoelectronics Progress, 57, 130001(2020).

    [7] Liu K B, Yang X H, He T T et al. Indium phosphide-based near-infrared single photon avalanche photodiode detector arrays[J]. Laser & Optoelectronics Progress, 56, 220001(2019).

    [8] Tang J, Li J X, Chen Q et al. Surface plasmon enhanced silicon-based near-infrared photoconductive detector[J]. Chinese Journal of Lasers, 47, 1113002(2020).

    [9] Reddy D V, Lita A E, Nam S W et al. Achieving 98% system efficiency at 1550 nm in superconducting nanowire single photon detectors[C]. //Rochester Conference on Coherence and Quantum Optics (CQO-11), August 4-8, 2019, Rochester, New York, W2B, 2(2019).

    [10] Zhang W J, Huang J, Zhang C J et al. A 16-pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz[J]. IEEE Transactions on Applied Superconductivity, 29, 1-4(2019).

    [11] Shibata H, Shimizu K, Takesue H et al. Ultimate low system dark-count rate for superconducting nanowire single-photon detector[J]. Optics Letters, 40, 3428-3431(2015).

    [12] Korzh B, Zhao Q Y, Allmaras J P et al. Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector[J]. Nature Photonics, 14, 250-255(2020).

    [13] You L X. Superconducting nanowire single-photon detectors for quantum information[J]. Nanophotonics, 9, 2673-2692(2020).

    [14] Boaron A, Boso G, Rusca D et al. Secure quantum key distribution over 421 km of optical fiber[J]. Physical Review Letters, 121, 190502(2018).

    [15] Xue L, Li Z L, Zhang L B et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength[J]. Optics Letters, 41, 3848-3851(2016).

    [16] Chen S J, Liu D K, Zhang W X et al. Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system[J]. Applied Optics, 52, 3241-3245(2013).

    [17] Li Z, Wu E, Pang C et al. Multi-beam single-photon-counting three-dimensional imaging lidar[J]. Optics Express, 25, 10189-10195(2017).

    [18] Kadin A M, Johnson M W. Nonequilibrium photon-induced hotspot: a new mechanism for photo detection in ultrathin metallic films[J]. Applied Physics Letters, 69, 3938-3940(1996).

    [19] Semenov A, Engel A, Hübers H W et al. Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips[J]. The European Physical Journal B, 47, 495-501(2005).

    [20] Miller A J, Lita A E, Calkins B et al. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent[J]. Optics Express, 19, 9102-9110(2011).

    [21] Esmaeil Z I, Los J W N, Gourgues R B M et al. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution[J]. APL Photonics, 2, 111301(2017).

    [22] Hu P, Li H, You L X et al. Detecting single infrared photons toward optimal system detection efficiency[J]. Optics Express, 28, 36884-36891(2020).

    [23] Liu D K, Chen S J, You L X et al. Fiber coupling of superconducting nanowire single-photon detectors[J]. Optics and Precision Engineering, 21, 1496-1502(2013).

    [24] Xu G B, Huang H, Zhan M H et al. Experimental evaluation of inductively coupled plasma deep silicon etching[J]. Chinese Journal of Vacuum Science and Technology, 33, 832-835(2013).

    Rongxin Geng, Hao Li, Jia Huang, Peng Hu, You Xiao, Huiqin Yu, Lixing You. Self-Aligned Superconducting Nanowire Single Photon Detector[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011022
    Download Citation