• Journal of Inorganic Materials
  • Vol. 34, Issue 6, 679 (2019)
Peng LI, Xiao-Lei NIE*, Ye TIAN, Wen-Bing FANG, Ping WEI, Wan-Ting ZHU, Zhi-Gang SUN, Qing-Jie ZHANG, and Wen-Yu ZHAO*
Author Affiliations
  • State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.15541/jim20180528 Cite this Article
    Peng LI, Xiao-Lei NIE, Ye TIAN, Wen-Bing FANG, Ping WEI, Wan-Ting ZHU, Zhi-Gang SUN, Qing-Jie ZHANG, Wen-Yu ZHAO. Fabrication and Planar Cooling Performance of Flexible Bi0.5Sb1.5Te3/epoxy Composite Thermoelectric Films[J]. Journal of Inorganic Materials, 2019, 34(6): 679 Copy Citation Text show less
    References

    [1] E SIMONS R, J EllSWORTH M, C CHU R. An assessment of module cooling enhancement with thermoelectric coolers.. Heat Transf, 127, 76-84(2005).

    [2] Y ZHANG H, C MUI Y, M TARIN. Analysis of thermoelectric cooler performance for high power electronic package. Appl. Therm. Eng, 30, 561-568(2010).

    [3] C AVRAM B, M IYENGAR, D KRAUS A. Design of optimum plate-fin natural convective heat sinks.. Electronic Packag, 125, 208-216(2003).

    [4] E BELL L. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457-1461(2008).

    [5] C HARMAN T, J TAYLOR P, P WALSH M et al. Quantum dot superlattice thermoelectric materials and devices. Science, 297, 2229-2232(2002).

    [6] I CHOWDHURY, R PRASHER, K LOFGREE et al. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. nanotechnol, 4, 235-238(2009).

    [7] F HAO, F QIU P, S TANG Y et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃. Energy & Environ Sci, 9, 3120-3127(2016).

    [8] J DISALVO F. Thermoelectric cooling and power generation. Science, 285, 703-706(1999).

    [9] J YANG, R STABLER F. Automotive applications of thermoelectric materials.. Electron. Mater, 38, 1245-1251(2009).

    [10] Z LU, M LAYANI, X ZHAO et al. Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small, 10, 3551-3554(2014).

    [11] B XU, T AGNE M, L FENG T et al. Nanocomposites from solution- synthesized PbTe-BiSbTe nanoheterostructure with unity figure of merit at low-medium temperatures (500-600 K). Adv.Mater, 29(2017).

    [12] J ZHU T, P HU L, B ZHAO X et al. New insight into intrinsic point defects in V2VI3 thermoelectric materials. Adv. Sci, 3(2016).

    [13] D MADAN, A CHEN, K WRIGHT P et al. Dispenser printed composite thermoelectric thick films for thermoelectric generator application. J. Appl. Phys, 109(2011).

    [14] D MADAN, Q WANG Z, A CHEN et al, 104(2014).

    [15] J KIM S, H WE J, J CHO B. A wearable thermoelectric generator fabricated on a glass fabric. Energy & Environ Sci, 7, 1959-1965(2014).

    [16] T VARGHESE, C HOLLAR, J RICHARDSON et al. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals. Sci. Rep, 6(2016).

    [17] H WU, X LIU, P WEI et al. Fabrication and characterization of brush-printed p-type Bi0.5Sb1.5Te3 thick films for thermoelectric cooling devices.. Electron. Mater, 46, 2950-2957(2016).

    [18] X SHI J, L CHEN H, H JIA S et al. Rapid and low-cost fabrication of thermoelectric composite using low-pressure cold pressing and thermocuring methods. Mater. Lett, 212, 299-302(2018).

    [19] Z CAO, E KOUKHARENKO, J TUDOR M et al. Flexible screen printed thermoelectric generator with enhanced processes and materials. Sens. Actuators, A, 238, 196-206(2016).

    [20] D MADAN, Q WANG Z, A CHEN et al. Enhanced performance of dispenser printed MA n-type Bi2Te3 composite thermoelectric generator. ACS Appl. Mater. Inter, 4, 6117-6124(2012).

    [21] D MADAN, Q WANG Z, A CHEN et al. High-performance dispenser printed MA p-type Bi0.5Sb1.5Te3 flexible thermoelectric generators for powering wireless sensor networks. ACS Appl. Mater. Inter, 5, 11872-11876(2013).

    [22] K HOU W, L NIE X, Y ZHAO W et al. Fabrication and excellent performance of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices. Nano Energy, 50, 766-776(2018).

    [23] X GUO, X JIA, J QIN et al. Fast preparation and high thermoelectric performance of the stable Bi0.5Sb1.5Te3 bulk materials for different synthesis pressures. Chem. Phys. Lett, 610, 204-208(2014).

    [24] D SUH, S LEE, H MUN et al. Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded grapheme composites by simultaneous modulation of electronic and thermal carrier transport. Nano Energy, 13, 67-76(2015).

    [25] D MADAN, Q WANG Z, K WRIGHT P et al. Printed flexible thermoelectric generators for use on low levels of waste heat. Appl.Energy, 156, 587-592(2015).

    [26] C CHEN J, J YAN Z, Q WU L. Nonequilibrium thermodynamic analysis of a thermoelectric device. Energy, 22, 979-985(1997).

    [27] G CHEN L, C WU, R SUN F. Heat transfer effect on the specific cooling load of refrigerators. Appl. Therm. Eng, 16, 989-997(1996).

    Peng LI, Xiao-Lei NIE, Ye TIAN, Wen-Bing FANG, Ping WEI, Wan-Ting ZHU, Zhi-Gang SUN, Qing-Jie ZHANG, Wen-Yu ZHAO. Fabrication and Planar Cooling Performance of Flexible Bi0.5Sb1.5Te3/epoxy Composite Thermoelectric Films[J]. Journal of Inorganic Materials, 2019, 34(6): 679
    Download Citation