• Journal of Semiconductors
  • Vol. 41, Issue 6, 062302 (2020)
H. J. Lee1、2, S. Y. Ko1, Y. H. Kim1, and J. Nah2
Author Affiliations
  • 1i3system, Inc., 26-32, Gajeongbuk-ro, Daejeon, 34113, Yuseong-gu, Korea
  • 2Department of Electrical Engineering, Chungnam National University, Daejeon, 34134, Yuseong-gu, Korea
  • show less
    DOI: 10.1088/1674-4926/41/6/062302 Cite this Article
    H. J. Lee, S. Y. Ko, Y. H. Kim, J. Nah. Strain-induced the dark current characteristics in InAs/GaSb type-II superlattice for mid-wave detector[J]. Journal of Semiconductors, 2020, 41(6): 062302 Copy Citation Text show less
    References

    [1] A Rogalski. Recent process in infrared detector technologies. Infrared Phys Technol, 54, 136(2011).

    [2] A Rogalski, P Martyniuk, M Kopytko. Challenges of small pixel infrared detectors: A review. Rep Prog Phys, 79, 1(2016).

    [3] A Rogalski. Next decade in infrared detectors. Proc SPIE, 10433, 104330L(2017).

    [4] D Rhiger, R Kvaas, S Harris et al. Progress with type-II superlattice IR detector arrays. Proc SPIE, 6542, 654202(2007).

    [5] N Herres, F Fuchs, J Schmitz et al. Effect of interfacial bonding on the structural and vibrational properties of InAs/GaSb superlattices. Phys Rev B, 53, 15688(1996).

    [6] J Steinshnider, M Weimer, R Kaspi et al. Visualizing interfacial structure at non-common-atom heterojunctions with cross-sectional scanning tunneling microscopy. Phys Rev Lett, 85, 2953(2000).

    [7] S Lyapin, P Klipstein, N Mason et al. Raman selection rules for the observation of interface modes in InAs/GaSb superlattices. Phy Rev Lett, 74, 3285(1995).

    [8] E Plis, S Annamalai, K Posani et al. Midwave infrared type-II InAs/GaSb superlattice detectors with mixed interfaces. J Appl Phys, 100, 014510(2006).

    [9] J Rodriguez, P Christol, L Cerutti et al. MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection. J Cryst Growth, 274, 6(2005).

    [10] G Liu, B Fruhberger, I Schuller et al. Quantitative structural characterization of InAs/GaSb superlatties. J Appl Phys, 100, 063536(2006).

    [11] D Zuo, P Qiao, D Wasserman et al. Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control. Appl Phys Lett, 102, 141107(2013).

    [12] Y Zhang, W Ma, J Huang et al. Long wavelength infrared InAs/GaSb superlattice photodetectors with InSb-like and mixed interfaces. IEEE J Quantum Electron, 47, 1475(2011).

    [13] Y Song, S Wang, C Asplund et al. Growth optimization, strain compensation and structure design of InAs/GaSb type-II superlattices for mid-infrared imaging. Cryst Struct Theory Appl, 02, 46(2013).

    [14] H Kim, Y Meng, J Rouviére et al. Atomic resolution mapping of interfacial intermixing and segration in InAs/GaSb superlattices: A correlative study. J Appl Phys, 113, 103511(2013).

    [15] K Mahalingam, H Haugan, G Brown et al. Strain analysis of compositionally tailored interfaces in InAs/GaSb superlattices. Appl Phys Lett, 103, 211605(2013).

    [16] Y Ashuach, E Lakin, C Saguy et al. Atomic intermixing and interface roughness in short-period InAs/GaSb superlattices for infrared photodetectors. J Appl Phys, 116, 124315(2014).

    [17] Y Meng, H Kim, J Rouviére et al. Digital model for X-ray diffraction with application to composition and strain determination in strained InAs/GaSb superlattices. J Appl Phys, 116, 013513(2014).

    [18] Y Sun, G Wang, W Xiang et al. 320 × 256 high operating temperature mid-infrared focal plane arrays based on type-II InAs/GaSb superlattice. Superlattices Microstruct, 111, 783(2017).

    [19] S Höglund, R Naureen, M Ivanov et al. Type II superlattices: HOT MWIR production and development at IRnova. Proc SPIE, 11002, 110020U(2019).

    H. J. Lee, S. Y. Ko, Y. H. Kim, J. Nah. Strain-induced the dark current characteristics in InAs/GaSb type-II superlattice for mid-wave detector[J]. Journal of Semiconductors, 2020, 41(6): 062302
    Download Citation