• Laser & Optoelectronics Progress
  • Vol. 59, Issue 6, 0617019 (2022)
Jiahui Zhong1, Junxin Wu2, Yawei Kong2, Wenhua Su2, Jiong Ma1、2、*, and Lan Mi1、2、**
Author Affiliations
  • 1Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, Shanghai 200433, China
  • 2Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.3788/LOP202259.0617019 Cite this Article Set citation alerts
    Jiahui Zhong, Junxin Wu, Yawei Kong, Wenhua Su, Jiong Ma, Lan Mi. Automated Analysis Methods for Autofluorescence Lifetime Microscopic Images of Yeast[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617019 Copy Citation Text show less
    References

    [1] Parapouli M, Vasileiadis A, Afendra A S et al. Saccharomyces cerevisiae and its industrial applications[J]. AIMS Microbiology, 6, 1-31(2020).

    [2] Rahmat E, Kang Y. Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites[J]. Applied Microbiology and Biotechnology, 104, 4659-4674(2020).

    [3] Longo V D, Shadel G S, Kaeberlein M et al. Replicative and chronological aging in saccharomyces cerevisiae[J]. Cell Metabolism, 16, 18-31(2012).

    [4] Botstein D, Fink G R. Yeast: an experimental organism for 21st century biology[J]. Genetics, 189, 695-704(2011).

    [5] Duina A A, Miller M E, Keeney J B. Budding yeast for budding geneticists: a primer on the saccharomyces cerevisiae model system[J]. Genetics, 197, 33-48(2014).

    [6] Moreau K, Surand J, le Dantec A et al. Recombinant yeast and human cells as screening tools to search for antibacterial agents targeting the transcription termination factor Rho[J]. The Journal of Antibiotics, 71, 447-455(2018).

    [7] Trevors J T, Merrick R L, Russell I et al. A comparison of methods for assessing yeast viability[J]. Biotechnology Letters, 5, 131-134(1983).

    [8] Williams T C, Xu X, Ostrowski M et al. Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast[J]. Synthetic Biology, 2, ysw002(2017).

    [9] Datta R, Gillette A, Stefely M et al. Recent innovations in fluorescence lifetime imaging microscopy for biology and medicine[J]. Journal of Biomedical Optics, 26, 070603(2021).

    [10] Okkelman I A, Dmitriev R I, Foley T et al. Use of fluorescence lifetime imaging microscopy (FLIM) as a timer of cell cycle S phase[J]. PLoS One, 11, e0167385(2016).

    [11] Wang M Y, Tang F, Pan X B et al. Rapid diagnosis and intraoperative margin assessment of human lung cancer with fluorescence lifetime imaging microscopy[J]. BBA Clinical, 8, 7-13(2017).

    [12] Meleshina A V, Dudenkova V V, Shirmanova M V et al. Probing metabolic states of differentiating stem cells using two-photon FLIM[J]. Scientific Reports, 6, 21853(2016).

    [13] Carpenter A E, Jones T R, Lamprecht M R et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes[J]. Genome Biology, 7, R100(2006).

    [14] Bredies K, Wolinski H. An active-contour based algorithm for the automated segmentation of dense yeast populations on transmission microscopy images[J]. Computing and Visualization in Science, 14, 341-352(2011).

    [15] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).

    [16] Lu A X, Zarin T, Hsu I S et al. YeastSpotter: accurate and parameter-free web segmentation for microscopy images of yeast cells[J]. Bioinformatics, 35, 4525-4527(2019).

    [17] Kong Y, Li H, Ren Y Y et al. Automated yeast cells segmentation and counting using a parallel U-Net based two-stage framework[J]. OSA Continuum, 3, 982-992(2020).

    [18] Buchanan R L, Whiting R C, Damert W C. When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves[J]. Food Microbiology, 14, 313-326(1997).

    [19] Coelho M A Z, Belo I, Pinheiro R et al. Effect of hyperbaric stress on yeast morphology: study by automated image analysis[J]. Applied Microbiology and Biotechnology, 66, 318-324(2004).

    [20] Portell X, Ginovart M, Carbó R et al. Differences in stationary-phase cells of a commercial saccharomyces cerevisiae wine yeast grown in aerobic and microaerophilic batch cultures assessed by electric particle analysis, light diffraction and flow cytometry[J]. Journal of Industrial Microbiology & Biotechnology, 38, 141-151(2011).

    [21] Guadalupe-Daqui M, Chen M D, Thompson-Witrick K A et al. Yeast morphology assessment through automated image analysis during fermentation[J]. Fermentation, 7, 44(2021).

    [22] Pizer S M, Amburn E P, Austin J D et al. Adaptive histogram equalization and its variations[J]. Computer Vision, Graphics, and Image Processing, 39, 355-368(1987).

    [23] Ulman V, Maška M, Magnusson K E G et al. An objective comparison of cell-tracking algorithms[J]. Nature Methods, 14, 1141-1152(2017).

    [24] Mu H W, Guo Y, Quan X H et al. Magnetic resonance imaging brain tumor image segmentation based on improved U-Net[J]. Laser & Optoelectronics Progress, 58, 0410022(2021).

    [25] Luo W J, Han G Q, Tian X D. Retinal vessel segmentation method based on multi-scale attention analytic network[J]. Laser & Optoelectronics Progress, 58, 2017001(2021).

    [26] Beucher S, Meyer F. The morphological approach to segmentation: the watershed transformation[M]. Mathematical morphology in image processing, 433-481(2018).

    [27] Xu W H, Pei Y J, Gao D L et al. Mass classification of breast mammogram based on attention mechanism and transfer learning[J]. Laser & Optoelectronics Progress, 58, 0410007(2021).

    [28] Alzubaidi L, Fadhel M A, Al-Shamma O et al. Deep learning models for classification of red blood cells in microscopy images to aid in sickle cell anemia diagnosis[J]. Electronics, 9, 427(2020).

    [29] Alzubaidi L, Al-Shamma O, Fadhel M A et al. Optimizing the performance of breast cancer classification by employing the same domain transfer learning from hybrid deep convolutional neural network model[J]. Electronics, 9, 445(2020).

    [30] Oquab M, Bottou L, Laptev I et al. Learning and transferring mid-level image representations using convolutional neural networks[C], 1717-1724(2014).

    [31] van der Maaten L, Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 9, 2579-2605(2008).

    [32] Ginovart M, Carbó R, Blanco M et al. Digital image analysis of yeast single cells growing in two different oxygen concentrations to analyze the population growth and to assist individual-based modeling[J]. Frontiers in Microbiology, 8, 2628(2018).

    [33] Atanasova M, Yordanova G, Nenkova R et al. Brewing yeast viability measured using a novel fluorescent dye and image cytometer[J]. Biotechnology & Biotechnological Equipment, 33, 548-558(2019).

    [34] Zahedi A, On V, Lin S C et al. Evaluating cell processes, quality, and biomarkers in pluripotent stem cells using video bioinformatics[J]. PLoS One, 11, e0148642(2016).

    [35] Yang Y F, Yang Y L, Liu Z J et al. Microcalcification-based tumor malignancy evaluation in fresh breast biopsies with hyperspectral stimulated Raman scattering[J]. Analytical Chemistry, 93, 6223-6231(2021).

    [36] Chen B L, Lu Y, Pan W H et al. Support vector machine classification of nonmelanoma skin lesions based on fluorescence lifetime imaging microscopy[J]. Analytical Chemistry, 91, 10640-10647(2019).

    Jiahui Zhong, Junxin Wu, Yawei Kong, Wenhua Su, Jiong Ma, Lan Mi. Automated Analysis Methods for Autofluorescence Lifetime Microscopic Images of Yeast[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617019
    Download Citation