• High Power Laser Science and Engineering
  • Vol. 10, Issue 6, 06000e39 (2022)
Yanqing Deng1、2, Dongning Yue1、2, Mufei Luo1、2, Xu Zhao1、2, Yaojun Li1、2, Xulei Ge1、2, Feng Liu1、2, Suming Weng1、2, Min Chen1、2、*, Xiaohui Yuan1、2, and Jie Zhang1、2
Author Affiliations
  • 1Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
  • 2Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, China
  • show less
    DOI: 10.1017/hpl.2022.30 Cite this Article Set citation alerts
    Yanqing Deng, Dongning Yue, Mufei Luo, Xu Zhao, Yaojun Li, Xulei Ge, Feng Liu, Suming Weng, Min Chen, Xiaohui Yuan, Jie Zhang. Effects of second-order dispersion of ultrashort laser pulse on stimulated Raman scattering[J]. High Power Laser Science and Engineering, 2022, 10(6): 06000e39 Copy Citation Text show less

    Abstract

    The influence of second-order dispersion (SOD) on stimulated Raman scattering (SRS) in the interaction of an ultrashort intense laser with plasma was investigated. More significant backward SRS was observed with the increase of the absolute value of SOD ($\mid \kern-1pt\!{\psi}_2\!\kern-1pt\mid$). The integrated intensity of the scattered light is positively correlated to the driver laser pulse duration. Accompanied by the side SRS, filaments with different angles along the laser propagation direction were observed in the transverse shadowgraph. A model incorporating Landau damping and above-threshold ionization was developed to explain the SOD-dependent angular distribution of the filaments.
    $$\begin{align} a(t) = {a}_0\exp \left(-\frac{t^2}{\tau^2}\right)\exp \left[i{\omega}_0t\left(1+\beta t\right)\right],\end{align}$$((1))

    View in Article

    $$\begin{align}\tau = {\left[\left(4+\Delta {\omega}^4{\psi}_2^2\right)/\Delta {\omega}^2\right]}^{1/2},\end{align}$$((2))

    View in Article

    $$\begin{align}\beta = \Delta {\omega}^4{\psi}_2/\left[2{\omega}_0\left(4+\Delta {\omega}^4{\psi}_2^2\right)\right],\end{align}$$((3))

    View in Article

    $$\begin{align}{\gamma}_0\approx \frac{k_{\mathrm{epw}}}{8}{v}_{\mathrm{osc}}{\left[\frac{\omega_{\mathrm{pe}}^2}{\omega_{\mathrm{epw}}\left({\omega}_0-{\omega}_{\mathrm{epw}}\right)}\right]}^{1/2},\end{align}$$((4))

    View in Article

    $$\begin{align}\left\langle \varepsilon \right\rangle = \frac{\int_0^{\frac{\pi }{2}}2{E}_{\mathrm{q}}W(t)\mathit{\cos}{\phi}^2 \mathrm{d}\phi}{\int_0^{\frac{\pi }{2}}W(t) \mathrm{d}\phi},\end{align}$$((5))

    View in Article

    $$\begin{align} \begin{array}{ll}{\Gamma}_{\mathrm{p}} = \!\!\!\!\!\!\!\!& {\left(\dfrac{\pi }{8}\right)}^{1/2}\dfrac{\omega_{\mathrm{pe}}}{{\left({k}_{\mathrm{p}}{\lambda}_{\mathrm{D}}\right)}^3}\mathit{\exp}\left[-\dfrac{1}{2}{\left({k}_{\mathrm{p}}{\lambda}_{\mathrm{D}}\right)}^{-2}-\dfrac{3}{2}\right]\\[6pt] {}& +{\left({\omega}_{\mathrm{pe}}/{\omega}_{\mathrm{epw}}\right)}^2{v}_{\mathrm{ei}},\end{array}\end{align}$$((6))

    View in Article

    $$\begin{align}\kern-5pt\kappa = {\left[\frac{\gamma_0^2}{v_{1\mathrm{x}}{v}_{2\mathrm{x}}}+\frac{1}{4}{\left(\frac{\Gamma_{\mathrm{s}}}{v_{1\mathrm{x}}}-\frac{\Gamma_{\mathrm{p}}}{v_{2\mathrm{x}}}\right)}^2\right]}^{1/2}-\frac{1}{2}\left(\frac{\Gamma_{\mathrm{s}}}{v_{1\mathrm{x}}}+\frac{\Gamma_{\mathrm{p}}}{v_{2\mathrm{x}}}\right),\end{align}$$((7))

    View in Article

    $$\begin{align}{v}_{1\mathrm{x}} = {k}_1{c}^2 \cos\theta /{\omega}_1,\end{align}$$((8))

    View in Article

    $$\begin{align}{v}_{2\mathrm{x}} = 3\left({k}_0-{k}_1 \cos\theta \right)\left({v}_{\mathrm{th}}^2/{\omega}_{\mathrm{pe}}\right),\end{align}$$((9))

    View in Article

    Yanqing Deng, Dongning Yue, Mufei Luo, Xu Zhao, Yaojun Li, Xulei Ge, Feng Liu, Suming Weng, Min Chen, Xiaohui Yuan, Jie Zhang. Effects of second-order dispersion of ultrashort laser pulse on stimulated Raman scattering[J]. High Power Laser Science and Engineering, 2022, 10(6): 06000e39
    Download Citation