• Journal of Semiconductors
  • Vol. 43, Issue 7, 072801 (2022)
Yunqi Li1, Xinwei Wang2, Ning Zhang2、*, Xuecheng Wei2, and Junxi Wang2
Author Affiliations
  • 1Institute of First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
  • 2State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.1088/1674-4926/43/7/072801 Cite this Article
    Yunqi Li, Xinwei Wang, Ning Zhang, Xuecheng Wei, Junxi Wang. Improving the incorporation of indium component for InGaN-based green LED through inserting photonic crystalline in the GaN layer[J]. Journal of Semiconductors, 2022, 43(7): 072801 Copy Citation Text show less
    References

    [1] S Strite. GaN, AlN, and InN: A review. J Vac Sci Technol B, 10, 1237(1992).

    [2] C Kisielowski, J Krüger, S Ruvimov et al. Strain-related phenomena in GaN thin films. Phys Rev B, 54, 17745(1996).

    [3] T Kozawa, T Kachi, H Kano et al. Thermal stress in GaN epitaxial layers grown on sapphire substrates. J Appl Phys, 77, 4389(1995).

    [4] C H Chen, M H Liao, L C Chang et al. Relaxation of residual stress in bent GaN film on sapphire substrate by laser treatment with an optimized surface structure design. IEEE Trans Electron Devices, 60, 767(2013).

    [5] J Napierala, D Martin, N Grandjean et al. Stress control in GaN/sapphire templates for the fabrication of crack-free thick layers. J Cryst Growth, 289, 445(2006).

    [6] H Ishikawa, G Y Zhao, N Nakada et al. GaN on Si substrate with AlGaN/AlN intermediate layer. Jpn J Appl Phys, 38, L492(1999).

    [7] A Dadgar, J Bläsing, A Diez et al. Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness. Jpn J Appl Phys, 39, L1183(2000).

    [8] E Feltin, B Beaumont, M Laügt et al. Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Appl Phys Lett, 79, 3230(2001).

    [9] P K Kandaswamy, C Bougerol, D Jalabert et al. Strain relaxation in short-period polar GaN/AlN superlattices. J Appl Phys, 106, 013526(2009).

    [10] M T Wang, K Y Liao, Y L Li. Growth mechanism and strain variation of GaN material grown on patterned sapphire substrates with various pattern designs. IEEE Photonics Technol Lett, 23, 962(2011).

    [11] J H Lee, J T Oh, Y C Kim et al. Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire. IEEE Photonics Technol Lett, 20, 1563(2008).

    [12] W J Tseng, M Gonzalez, L Dillemans et al. Strain relaxation in GaN nanopillars. Appl Phys Lett, 101, 253102(2012).

    [13] A H Park, T H Seo, S Chandramohan et al. Efficient stress-relaxation in InGaN/GaN light-emitting diodes using carbon nanotubes. Nanoscale, 7, 15099(2015).

    [14] K Cheng, M Leys, S Degroote et al. Formation of V-grooves on the (Al, Ga)N surface as means of tensile stress relaxation. J Cryst Growth, 353, 88(2012).

    [15] M A Hossain, M R Islam. A theoretical calculation of misfit dislocation and strain relaxation in step-graded InxGa1–xN/GaN layers. Adv Mater Res, 403–408, 456(2011).

    [16] X T Fu, T D Ma, S M Wang et al. Strain relaxation of GaN heterostructure induced by high-energy electron irradiation. Chin J Rare Met, 36, 450(2012).

    [17] E C Young, J S Speck. Heteroepitaxial lattice mismatch stress relaxation in nonpolar and semipolar GaN by dislocation glide. ECS Trans, 50, 797(2013).

    [18] L Liu, L Wang, D Li et al. Influence of indium composition in the prestrained InGaN interlayer on the strain relaxation of InGaN/ GaN multiple quantum wells in laser diode structures. J Appl Phys, 109, 073106(2011).

    [19] D Won, X J Weng, J M Redwing. Effect of indium surfactant on stress relaxation by V-defect formation in GaN epilayers grown by metalorganic chemical vapor deposition. J Appl Phys, 108, 093511(2010).

    [20] N Zhang, Z Liu, T B Wei et al. Effect of the graded electron blocking layer on the emission properties of GaN-based green light-emitting diodes. Appl Phys Lett, 100, 053504(2012).

    [21] C X Du, T B Wei, H Y Zheng et al. Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes. Opt Express, 21, 25373(2013).

    [22] N Zhang, Z Liu, Z Si et al. Reduction of efficiency droop and modification of polarization fields of InGaN-based green light-emitting diodes via Mg-doping in the barriers. Chin Phys Lett, 30, 087101(2013).

    [23] A Minj, D Cavalcoli, A Cavallini et al. Strain distribution and defect analysis in III-nitrides by dynamical AFM analysis. Nanotechnology, 24, 145701(2013).

    [24] V Y Davydov, Y E Kitaev, I N Goncharuk et al. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys Rev B, 58, 12899(1998).

    [25] J M Wagner, F Bechstedt. Phonon deformation potentials of α-GaN and-AlN: An ab initio calculation. Appl Phys Lett, 77, 346(2000).

    [26] S C Jain, M Willander, H Maes. Stresses and strains in epilayers, stripes and quantum structures of III-V compound semiconductors. Semicond Sci Technol, 11, 641(1996).

    [27] F M Morales, D González, J G Lozano et al. Determination of the composition of InxGa1−xN from strain measurements. Acta Mater, 57, 5681(2009).

    [28] M A Moram, M E Vickers. X-ray diffraction of III-nitrides. Rep Prog Phys, 72, 036502(2009).

    Yunqi Li, Xinwei Wang, Ning Zhang, Xuecheng Wei, Junxi Wang. Improving the incorporation of indium component for InGaN-based green LED through inserting photonic crystalline in the GaN layer[J]. Journal of Semiconductors, 2022, 43(7): 072801
    Download Citation