• Advanced Photonics Nexus
  • Vol. 2, Issue 1, 016008 (2023)
Mengyun Hu1、2、3, Fangfang Li1、2, Shencheng Shi1、2, Yu Qiao1、2, Jinman Ge4, Xiaojun Li4, and Heping Zeng1、2、5、6、*
Author Affiliations
  • 1East China Normal University, State Key Laboratory of Precision Spectroscopy, Shanghai, China
  • 2Chongqing Institute of East China Normal University, Chongqing Key Laboratory of Precision Optics, Chongqing, China
  • 3University of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering, Engineering Research Center of Optical Instrument and System (Ministry of Education), Shanghai Key Laboratory of Modern Optical System, Shanghai, China
  • 4China Academy of Space Technology (Xi’an), National Key Laboratory of Science and Technology on Space Microwave, Xi’an, Shaanxi, China
  • 5Shanghai Research Center for Quantum Sciences, Shanghai, China
  • 6Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
  • show less
    DOI: 10.1117/1.APN.2.1.016008 Cite this Article Set citation alerts
    Mengyun Hu, Fangfang Li, Shencheng Shi, Yu Qiao, Jinman Ge, Xiaojun Li, Heping Zeng. Detection of trace metals in water by filament- and plasma-grating-induced breakdown spectroscopy[J]. Advanced Photonics Nexus, 2023, 2(1): 016008 Copy Citation Text show less
    References

    [1] A. Ym et al. Laser opto-ultrasonic dual detection for simultaneous compositional, structural, and stress analyses for wire + arc additive manufacturing. Addit. Manuf., 31, 100956(2020).

    [2] Z. A. Deng et al. A plasma-image-assisted method for matrix effect correction in laser-induced breakdown spectroscopy. Anal. Chim. Acta, 1107, 14-22(2020).

    [3] L. B. Guo et al. Development in the application of laser-induced breakdown spectroscopy in recent years: a review. Front. Phys., 16, 22500(2021).

    [4] C. R. Bhatt et al. Evaluation of analytical performance of double pulse laser-induced breakdown spectroscopy for the detection of rare earth elements. Opt. Laser Technol., 126, 106110(2020).

    [5] B. Li et al. A review of femtosecond laser-induced emission techniques for combustion and flow field diagnostics. Appl. Sci., 9, 1906(2019).

    [6] Y. Wenbin et al. Quantitative analysis of trace oxygen concentration in argon and nitrogen based on laser-induced breakdown spectroscopy. Chin. J. Lasers, 44, 1011001(2017).

    [7] V. Sturm, R. Noll. Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N2, and C3H8 for simultaneous C, H, O, and N measurement. Appl. Opt., 42, 6221-6225(2003). https://doi.org/10.1364/AO.42.006221

    [8] L. Zheng et al. On the performance of laser-induced breakdown spectroscopy for direct determination of trace metals in lubricating oils. Spectrochim. Acta, Part B, 99, 1-8(2014).

    [9] C. Du, C. Yang, M. Zhang. Investigation on the dynamic characteristics of LIBS for heavy metal Mn in liquid matrix. Optik, 180, 602-609(2019).

    [10] V. Lazic, S. Jovićević. Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects. Spectrochim. Acta, Part B, 101, 288-311(2014).

    [11] Y. Chu et al. Half-life determination of inorganic-organic hybrid nanomaterials in mice using laser-induced breakdown spectroscopy. J. Adv. Res., 24, 353-361(2020).

    [12] P. A. Babushkin, G. G. Matvienko, V. K. Oshlakov. Determination of the elemental composition of aerosol by femtosecond laser-induced breakdown spectroscopy. Atmos. Ocean. Opt., 35, 19-26(2022).

    [13] L. M. Narlagiri et al. Recent trends in laser-based standoff detection of hazardous molecules. TrAC Trends Anal. Chem., 153, 116645(2022).

    [14] X. Pu, N. H. Cheung. ArF laser induced plasma spectroscopy of lead ions in aqueous solutions: plume reheating with a second Nd:YAG laser pulse. Appl. Spectrosc., 57, 588-590(2003).

    [15] H. Loudyi et al. Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF). J. Anal. At. Spectrom., 24, 1421-1428(2009).

    [16] S. Niu, L. Zheng, H. Zeng. Laser sintered adsorption of metal elements on oxide nanoparticles for laser induced breakdown spectroscopic analysis of solid. Spectrochim. Acta, Part B, 158, 105626(2019).

    [17] A. K. S. Ajmathulla, V. R. Soma. Discrimination of bimetallic alloy targets using femtosecond filament-induced breakdown spectroscopy in standoff mode. Opt. Lett., 43, 3465-3468(2018).

    [18] A. K. Shaik, V. R. Soma. Standoff discrimination and trace detection of explosive molecules using femtosecond filament induced breakdown spectroscopy combined with silver nanoparticles. OSA Contin., 2, 554-562(2019).

    [19] D. Zhang et al. Three-dimensional elemental imaging of material surface using image-assisted laser-induced breakdown spectroscopy. Appl. Surf. Sci., 534, 147601(2020).

    [20] P. J. Skrodzki, M. Burger, I. Jovanovic. Transition of femtosecond-filament-solid interactions from single to multiple filament regime. Sci. Rep., 7, 12740(2017).

    [21] A. K. Shaik et al. Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis. Opt. Express, 26, 8069-8083(2018).

    [22] D. C. Zhang et al. Simple method for liquid analysis by laser-induced breakdown spectroscopy (LIBS). Opt. Express, 26, 18794-18802(2018).

    [23] Y. Jing et al. Research about analysis of heavy metals in liquid jet by laser-induced breakdown spectroscopy. Chin. J. Lasers, 39, 0215001(2012).

    [24] D. Zhu et al. Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent. Anal. Methods, 4, 819-823(2012).

    [25] D. Bae et al. Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy. Spectrochim. Acta, Part B, 113, 70-78(2015).

    [26] H. Sobral, R. Sanginés, A. Trujillo-Vázquez. Detection of trace elements in ice and water by laser-induced breakdown spectroscopy. Spectrochim. Acta, Part B, 78, 62-66(2012).

    [27] C. Wang et al. Enrichment of trace lead in water with graphite and measurement by laser-induced breakdown spectroscopy. Chin. J. Lasers, 38, 1115002(2011).

    [28] S. Niu et al. Laser-induced breakdown spectroscopic detection of trace level heavy metal in solutions on a laser-pretreated metallic target. Talanta, 179, 312-317(2018).

    [29] L. Zheng et al. Comparative study of the matrix effect in Cl analysis with laser-induced breakdown spectroscopy in a pellet or in a dried solution layer on a metallic target. Spectrochim. Acta, Part B, 118, 66-71(2016).

    [30] B. Xue et al. Characteristics of the secondary breakdown of DP-LIBS in bulk water with different axial focusing arrangements and laser energies. Spectrochim. Acta, Part B, 151, 20-25(2019).

    [31] M. L. Zheng et al. Quantitative analysis of Cu in water by collinear DP-LIBS. Spectrosc. Spectral Anal., 34, 1954-1958(2014).

    [32] Y. Feng et al. Investigation of laser-induced breakdown spectroscopy of a liquid jet. Appl. Opt., 49, C70-C74(2010).

    [33] K. L. Eland et al. Energy dependence of emission intensity and temperature in a LIBS plasma usingfemtosecond excitation. Appl. Spectrosc., 55, 286-291(2001).

    [34] P. J. Skrodzki et al. Ultrafast laser filament-induced fluorescence spectroscopy of uranyl fluoride. Sci. Rep., 8, 11629(2018).

    [35] S. S. Harilal et al. Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy. Opt. Express, 24, 17941-17949(2016).

    [36] E. L. Gurevich, R. Hergenröder. Femtosecond laser-induced breakdown spectroscopy: physics, applications, and perspectives. Appl. Spectrosc., 61, 233A-242A(2007).

    [37] A. Couairon, A. Mysyrowicz. Femtosecond filamentation in transparent media. Phys. Rep., 441, 47-189(2007).

    [38] Y. H. Chen et al. Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments. Phys. Rev. Lett., 105, 215005(2010).

    [39] N. Li et al. Signal enhancement in underwater long-pulse laser-induced breakdown spectroscopy for the analysis of bulk water. J. Anal. At. Spectrom., 36, 1170-1179(2021).

    [40] M. Cui et al. Signal improvement for underwater measurement of metal samples using collinear long-short double-pulse laser induced breakdown spectroscopy. Front. Phys., 8, 237(2020).

    [41] F. Liu et al. Filamentary plasma grating induced by interference of two femtosecond laser pulses in water. Opt. Express, 25, 22303-22311(2017).

    [42] H. Peng et al. Dynamical aspects of plasma gratings driven by a static ponderomotive potential. Plasma Phys. Control. Fusion, 62, 115015(2020).

    [43] S. E. Schrauth et al. Study of self-diffraction from laser generated plasma gratings in the nanosecond regime. Phys. Plasmas, 26, 073108(2019).

    [44] M. Li et al. Particle in cell simulation on plasma grating contrast enhancement induced by infrared laser pulse. Phys. Plasmas, 25, 053106(2018).

    [45] J. Liu et al. Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air. Appl. Phys. Lett., 99, 151105(2011).

    [46] M. Y. Hu et al. Plasma-grating-induced breakdown spectroscopy. Adv. Photonics, 2, 065001(2020).

    [47] P. Lu, J. Wu, H. Zeng. Manipulation of plasma grating by impulsive molecular alignment. Appl. Phys. Lett., 103, 221113(2013).

    [48] X. Yang et al. Experimental observation of noncollinear coupling of filaments in air, CTuE6(2008).

    [49] X. Yang et al. Plasma waveguide arrays from filament interaction in air, CTuPP1(2010).

    [50] M. Hu et al. Femtosecond laser-induced breakdown spectroscopy by multidimensional plasma grating. J. Anal. At. Spectrom., 37, 841-848(2022).

    [51] C. B. Faye, E. Frejafon, T. Amodeo. Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy. Spectrochim. Acta, Part B, 91, 5-11(2014).

    [52] S. Koch et al. Resonance fluorescence spectroscopy in laser-induced cavitation bubbles. Anal. Bioanal. Chem., 385, 312-315(2006).

    [53] S. Koch et al. Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy. Spectrochim. Acta, Part B, 60, 1230-1235(2005).

    [54] X. Yang et al. Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air. Appl. Phys. Lett., 97, 071108(2010).

    [55] L. Shi et al. Generation of high-density electrons based on plasma grating induced Bragg diffraction in air. Phys. Rev. Lett., 107, 095004(2011).

    [56] Z. Wang et al. Emission characteristics of laser-induced plasma using collinear long and short dual-pulse laser-induced breakdown spectroscopy (LIBS). Appl. Spectrosc., 71, 2187-2198(2017).

    [57] M. Cui et al. Carbon detection in solid and liquid steel samples using ultraviolet long-short double pulse laser-induced breakdown spectroscopy. Spectrochim. Acta, Part B, 167, 105839(2020).

    [58] R. Yang, L. Bi. Spectral enhancement mechanism and analysis of defocused collinear DP-LIBS technology. Optik, 243, 167025(2021).

    [59] S. S. Harilal, J. Yeak, M. C. Phillips. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy. Opt. Express, 23, 27113-27122(2015).

    [60] L. A. Finney et al. Filament-induced breakdown spectroscopy signal enhancement using optical wavefront control. Opt. Commun., 490, 126902(2021).

    [61] H. W. Zang et al. In situ determination of the equivalence ratio in a methane/air flow field by femtosecond filament excitation. Laser Phys., 30, 035402(2020).

    [62] D. Reyes et al. Filament conductivity enhancement through nonlinear beam interaction. Opt. Express, 28, 26764-26773(2020).

    Mengyun Hu, Fangfang Li, Shencheng Shi, Yu Qiao, Jinman Ge, Xiaojun Li, Heping Zeng. Detection of trace metals in water by filament- and plasma-grating-induced breakdown spectroscopy[J]. Advanced Photonics Nexus, 2023, 2(1): 016008
    Download Citation