• Journal of Inorganic Materials
  • Vol. 34, Issue 1, 65 (2019)
Xiao-Yuan LIU1、2, Bao-Dan LIU1, Ya-Nan JIANG1, Ke WANG1、2, Yang ZHOU1、2, Bing YANG1, Xing-Lai ZHANG1, Xin JIANG1, [in Chinese]1、2, [in Chinese]1, [in Chinese]1, [in Chinese]1、2, [in Chinese]1、2, [in Chinese]1, [in Chinese]1, and [in Chinese]1
Author Affiliations
  • 11. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
  • 22. School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.15541/jim20180255 Cite this Article
    Xiao-Yuan LIU, Bao-Dan LIU, Ya-Nan JIANG, Ke WANG, Yang ZHOU, Bing YANG, Xing-Lai ZHANG, Xin JIANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. In-situ Synthesis of Perovskite SrTiO3 Nanostructures with Modified Morphology and Tunable Optical Absorption Property[J]. Journal of Inorganic Materials, 2019, 34(1): 65 Copy Citation Text show less
    References

    [1] S KAZIM, K NAZEERUDDIN M, M GRATZEL et al. Perovskite as light harvester: a game changer in photovoltaics. Angew Chem. Int. Edit., 53, 2812-2824(2014).

    [2] T SATO, U SULAEMAN, S YIN. Solvothermal synthesis and photocatalytic properties of chromium-doped SrTiO3 nanoparticles. Appl Catal B. -Environ., 105, 206-210(2011).

    [3] A KUDO, K IWASHINA. Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible- light irradiation.. Am. Chem. Soc., 133, 13272-13275(2011).

    [4] B COMES R, Y SMOLIN S, C KASPAR T et al. 106(9): 092901-1-5(2015).

    [5] I PARK K, S XU, Y LIU et al. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Letters, 10, 4939-4943(2010).

    [6] E GRABOWSKA. Selected perovskite oxides: characterization, preparation and photocatalytic properties—a review. Applied Catalysis B: Environmental, 186, 97-126(2016).

    [7] A ASHOK, B MADHAVAN. Review on nanoperovskites: materials, synthesis, and applications for proton and oxide ion conductivity. Ionics, 21, 1-10(2014).

    [8] A KUDO, Y MISEKI. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 38, 253-278(2009).

    [9] Y DIAMANT, O MELAMED, G CHEN S et al. Core-shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core. J. Phys. Chem. B, 107, 1977-1981(2003).

    [10] S BURNSIDE, F LENZMANN, J KRUEGER et al. Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: indication for electron injection from higher excited dye states. J. Phys. Chem. B, 105, 6347-6352(2001).

    [11] P LI, T WANG, Q KANG et al. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO/TiO coaxial nanotube arrays. Angewandte Chemie International Edition, 54, 841-845(2014).

    [12] T CAO, Y LI, C WANG et al. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir, 27, 2946-2952(2011).

    [13] H WEI X, Q QIU X, Z LONG. Preparation of SrTiO3 cubes by molten salt method and its surface ions modification with Cu(II) clusters. J. Inorg. Mater., 28, 1103-1107(2013).

    [14] H YAN J, R ZHU Y, G TANG Y et al. Preparation and photocatalytic hydrogen generation activity of nitrogen doped SrTiO3 under visible light irradiation.. Inorg. Mater., 23, 443-448(2008).

    [15] L JI, D MCDANIEL M, S WANG et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nano, 10, 84-90(2014).

    [16] R ZHU Y, L ZHANG, H YAN J et al. Preparation and photocatalytic hydrogen production of NiO(CoO)/N-SrTiO3 heterojunction complex catalyst under simulated sunlight irradiation. J. Inorg. Mater., 24, 666-670(2009).

    [17] V KOVALEVSKY A, S POPULOH. PATRÍCIO S G, et al. Design of SrTiO3-based thermoelectrics by tungsten substitution. The Journal of Physical Chemistry C, 119, 4466-4478(2015).

    [18] A OHTOMO, Y HWANG H. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature, 427, 423-426(2004).

    [19] Q KUANG, S YANG. Template synthesis of single-crystal-like porous SrTiO3 nanocube assemblies and their enhanced photocatalytic hydrogen evolution. ACS Applied Materials & Interfaces, 5, 3683-3690(2013).

    [20] J ZHUANG, G CHEN Z, H ZHAN et al. Correlation between multiple growth stages and photocatalysis of SrTiO3 nanocrystals. The Journal of Physical Chemistry C, 119, 3530-3537(2015).

    [21] G SREEDHAR, A SIVANANTHAM, T BASKARAN et al. A role of lithiated sarcosine TFSI on the formation of single crystalline SrTiO3 nanocubes via hydrothermal method. Materials Letters, 133, 127-131(2014).

    [22] K CHENG, L DONG, Q LUO et al. 4: 5084-1-5(2014).

    [23] Y JIANG, Z ZHAI, B LIU et al. A general strategy toward the rational synthesis of metal tungstate nanostructures using plasma electrolytic oxidation method. Appl. Surf. Sci., 356, 273-281(2015).

    [24] N JIANG Y, D LIU B, J YANG W et al. New strategy for the in situ synthesis of single-crystalline MnWO4/TiO2 photocatalysts for efficient and cyclic photodegradation of organic pollutants. CrystEngComm., 18, 1832-1841(2016).

    [25] Y JIANG, L YANG, B LIU et al. 5: 14330-1-10(2015).

    [26] B LIU, W YANG, Y JIANG et al. Crystalline (Ni1-xCox)5TiO7 nanostructures grown in situ on a flexible metal substrate used towards efficient CO oxidation. Nanoscale, 9, 11713-11719(2017).

    [27] S WYBORNOV, X JIANG, L ZHANG et al. Highly efficient nanoarchitectured Ni5TiO7 catalyst for biomass gasification. ACS Applied Materials & Interfaces, 4, 4062-4066(2012).

    [28] A YEROKHIN, F GOLESTANIFARD, N BARATI et al. Alumina- zirconia coatings produced by plasma electrolytic oxidation on Al alloy for corrosion resistance improvement.. Alloy Compd., 724, 435-442(2017).

    [29] T HAASCH R, E BRECKENFELD, W MARTIN L. Single crystal perovskites analyzed using X-ray photoelectron spectroscopy: 1. SrTiO3(001). Surface Science Spectra, 21, 87-94(2014).

    [30] H MOCKEL, F WILLIG, M GIERSIG. Formation of uniform size anatase nanocrystals from bis(ammoniumlactato)titanium dihydroxide by thermohydrolysis. Journal of Materials Chemistry, 9, 3051-3056(1999).

    [31] F DANG, K KATO, I MIMURA K et al. Nano-sized cube-shaped single crystalline oxides and their potentials, composition, assembly and functions. Advanced Powder Technology, 25, 1401-1414(2014).

    [32] K FUJINAMI, K KATAGIRI, J KAMIYA et al. Sub-10 nm strontium titanate nanocubes highly dispersed in non-polar organic solvents. Nanoscale, 2, 2080-2083(2010).

    [33] Y GUO, G LIU, Z REN et al. Single crystalline brookite titanium dioxide nanorod arrays rooted on ceramic monoliths: a hybrid nanocatalyst support with ultra-high surface area and thermal stability. CrystEngComm., 15, 8345-8352(2013).

    [34] G MOTTI S, A AKKERMAN Q. KANDADA A R S, et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control.. Am. Chem. Soc., 138, 1010-1016(2016).

    [35] B MITZI D, D DIMITRAKOPOULOS C, T XU Z et al. Semiconducting perovskites (2-XC6H4C2H4NH3)2SnI4 (X = F, Cl, Br): steric interaction between the organic and inorganic layers. Inorganic Chemistry, 42, 2031-2039(2003).

    Xiao-Yuan LIU, Bao-Dan LIU, Ya-Nan JIANG, Ke WANG, Yang ZHOU, Bing YANG, Xing-Lai ZHANG, Xin JIANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. In-situ Synthesis of Perovskite SrTiO3 Nanostructures with Modified Morphology and Tunable Optical Absorption Property[J]. Journal of Inorganic Materials, 2019, 34(1): 65
    Download Citation