• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2021356 (2022)
Xu-Liang CHAI1、2, Yi ZHOU1、2、*, Fang-Fang WANG2, Zhi-Cheng XU2, Zhao-Ming LIANG2, Yi-Hong ZHU2, Jian ZHOU2, Lu-Lu ZHENG2, Min HUANG2, Zhi-Zhong BAI2, Ai-Bo HUANG2, Hong-Lei CHEN2, Rui-Jun DING2, and Jian-Xin CHEN1、2、*
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering,Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China
  • 2Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.008 Cite this Article
    Xu-Liang CHAI, Yi ZHOU, Fang-Fang WANG, Zhi-Cheng XU, Zhao-Ming LIANG, Yi-Hong ZHU, Jian ZHOU, Lu-Lu ZHENG, Min HUANG, Zhi-Zhong BAI, Ai-Bo HUANG, Hong-Lei CHEN, Rui-Jun DING, Jian-Xin CHEN. Interband cascaded infrared optoelectronic devices for high operating temperature applications[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021356 Copy Citation Text show less
    References

    [1] A Rogalski, J Antoszewski, L Faraone. Third-generation infrared photodetector arrays. J Appl Phys, 105, 091101(2009).

    [2] M Razeghi, A Haddadi, A M Hoang et al. Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems. J Electron Mater, 43, 2802-2807(2014).

    [3] A Rogalski, P Martyniuk, M Kopytko. InAs/GaSb type-II superlattice infrared detectors: Future prospect. Appl Phys Rev, 4, 031304(2017).

    [4] S A Pour, E K Huang, G Chen et al. High operating temperature midwave infrared photodiodes and focal plane arrays based on type-II InAs/GaSb superlattices. Appl Phys Lett, 98, 143501(2011).

    [5] D Z Y Ting, A Soibel, C J Hill et al. Antimonide superlattice complementary barrier infrared detector (CBIRD). Infrared Phys Technol, 54, 267-272(2011).

    [6] D Z Y Ting, A Soibel, A Khoshakhlagh et al. Exclusion, extraction, and junction placement effects in the complementary barrier infrared detector. Appl Phys Lett, 102, 121109(2013).

    [7] P C Klipstein. XBnn and XBpp infrared detectors. J Cryst Growth, 425, 351-356(2015).

    [8] J Piotrowski, W Gawron. Ultimate performance of infrared photodetectors and figure of merit of detector material. Infrared Phys Technol, 38, 63-68(1997).

    [9] R T Hinkey, R Q Yang. Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors. J Appl Phys, 114, 104506(2013).

    [10] R Q Yang, Z Tian, Z Cai et al. Interband-cascade infrared photodetectors with superlattice absorbers. J Appl Phys, 107, 054514(2010).

    [11] N Gautam, S Myers, A V Barve et al. High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice. Appl Phys Lett, 101, 021106(2012).

    [12] Z Tian, R T Hinkey, R Q Yang et al. Interband cascade infrared photodetectors with enhanced electron barriers and p-type superlattice absorbers. J Appl Phys, 111, 024510(2012).

    [13] Z B Tian, T Schuler-Sandy, S Krishna. Electron barrier study of mid-wave infrared interband cascade photodetectors. Appl Phys Lett, 103, 083501(2013).

    [14] W Pusz, A Kowalewski, P Martyniuk et al. Mid-wavelength infrared type-II InAsGaSb superlattice interband cascade photodetectors. Opt Eng, 53, 043107(2014).

    [15] Z B Tian, S E Godoy, H S Kim et al. High operating temperature interband cascade focal plane arrays. Appl Phys Lett, 105, 051109(2014).

    [16] H Lotfi, L Lei, L Li et al. High-temperature operation of interband cascade infrared photodetectors with cutoff wavelengths near 8 μm. Opt Eng(2015).

    [17] H Lotfi, L Li, H Ye et al. Interband cascade infrared photodetectors with long and very-long cutoff wavelengths. Infrared Phys Technol, 70, 162-167(2015).

    [18] L Lei, L Li, H Ye et al. Long wavelength interband cascade infrared photodetectors operating at high temperatures. J Appl Phys, 120, 193102(2016).

    [19] H Lotfi, L Li, L Lei et al. Short-wavelength interband cascade infrared photodetectors operating above room temperature. J Appl Phys, 119, 023105(2016).

    [20] L Lei, L Li, H Lotfi et al. Mid-wave interband cascade infrared photodetectors based on GaInAsSb absorbers. Semicond Sci Technol, 31, 105014(2016).

    [21] R Q Yang, R T Hinkey. Ultimate detectivity of multiple-stage interband cascade infrared photodetectors. Appl Phys Lett, 118, 241101(2021).

    [22] R T Hinkey, R Q Yang. Comparison of ultimate limits of interband cascade infrared photodetectors and single-absorber detectors. Proc SPIE, 8868, 886804(2013).

    [23] Y Zhou, J Chen, Z Xu et al. High quantum efficiency mid-wavelength interband cascade infrared photodetectors with one and two stages. Semicond Sci Technol, 31, 085005(2016).

    [24] Y ZHOU, X L CHAI, Y TIAN et al. Studies on InAs/GaAsSb mid-wavelength interband cascade infrared focal plane arrays. J. Infrared Milim. Waves, 38, 745-750(2019).

    [25] Z Xie, J Huang, X Chai et al. High-speed mid-wave infrared interband cascade photodetector at room temperature. Opt Express, 28, 36915-36923(2020).

    [26] Y Zhou, Q Lu, X Chai et al. InAs/GaSb superlattice interband cascade light emitting diodes with high output power and high wall-plug efficiency. Appl Phys Lett, 114, 253507(2019).

    [27] A J Muhowski, A M Muellerleile, J T Olesberg et al. Internal quantum efficiency in 6.1 Å superlattices of 77% for mid-wave infrared emitters. Appl Phys Lett, 117, 061101(2020).

    Xu-Liang CHAI, Yi ZHOU, Fang-Fang WANG, Zhi-Cheng XU, Zhao-Ming LIANG, Yi-Hong ZHU, Jian ZHOU, Lu-Lu ZHENG, Min HUANG, Zhi-Zhong BAI, Ai-Bo HUANG, Hong-Lei CHEN, Rui-Jun DING, Jian-Xin CHEN. Interband cascaded infrared optoelectronic devices for high operating temperature applications[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021356
    Download Citation