• Photonics Research
  • Vol. 10, Issue 2, 357 (2022)
Zhihai Liu1、2, Siying Cheng1, Yu Zhang1、*, Wei Jin1, Xiang Li1, Yaru Li1, Yaxun Zhang1、4, Xinghua Yang1, Jianzhong Zhang1, and Libo Yuan3
Author Affiliations
  • 1Key Laboratory of In-fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin 150001, China
  • 2National Demonstration Center for Experimental Physics Education, Harbin Engineering University, Harbin 150001, China
  • 3Photonics Research Center, Guilin University of Electronics Technology, Guilin 541004, China
  • 4e-mail: zhangyaxun@hrbeu.edu.cn
  • show less
    DOI: 10.1364/PRJ.439506 Cite this Article Set citation alerts
    Zhihai Liu, Siying Cheng, Yu Zhang, Wei Jin, Xiang Li, Yaru Li, Yaxun Zhang, Xinghua Yang, Jianzhong Zhang, Libo Yuan. Intelligent all-fiber device: storage and logic computing[J]. Photonics Research, 2022, 10(2): 357 Copy Citation Text show less
    References

    [1] T. Lagkas, D. Klonidis, P. Sarigiannidis, I. Tomkos. 5G/NGPON evolution and convergence: developing on spatial multiplexing of optical fiber links for 5G infrastructures. Fiber Integr. Opt., 39, 4-23(2020).

    [2] S. Bjorn, B. Giulio, R. Ahmad, C. Fabio, O. Peter. Rethinking optical transport to pave the way for 5G and the networked society. J. Lightwave Technol., 33, 1084-1091(2015).

    [3] J. S. Wey, J. W. Zhang. Passive optical networks for 5G transport: technology and standards. J. Lightwave Technol., 37, 2830-2837(2019).

    [4] B. Lee. Review of the present status of optical fiber sensors. Opt. Fiber Technol., 9, 57-79(2003).

    [5] D. Wang, Q. Sui, Z. Li. Toward universal optical performance monitoring for intelligent optical fiber communication networks. IEEE Commun. Mag., 58, 54-59(2020).

    [6] P. Iovanna, F. Cavaliere, S. Stracca, L. Giorgi, F. Ubaldi. 5G xhaul and service convergence: transmission, switching and automation enabling technologies. J. Lightwave Technol., 38, 2799-2806(2020).

    [7] G. Wellbrock, T. Wang, O. Ishida. New paradigms in optical communications and networks. IEEE Commun. Mag., 51, 22-23(2013).

    [8] M. Naghshvarianjahromi, S. Kumar, M. J. Deen. Smart long-haul fiber optic communication systems using brain-like intelligence. 16th Canadian Workshop on Information Theory (CWIT), 1-6(2019).

    [9] N. Pleros, D. Apostolopoulos, D. Petrantonakis, C. Stamatiadis, H. Avramopoulos. Optical static RAM cell. IEEE Photonics Technol. Lett., 21, 73-75(2009).

    [10] D. Fitsios, C. Vagionas, G. T. Kanellos, A. Miliou, N. Pleros. Dual-wavelength bit input optical RAM with three SOA-XGM switches. IEEE Photonics Technol. Lett., 24, 1142-1144(2012).

    [11] C. Vagionas, D. Fitsios, G. T. Kanellos, N. Pleros, A. Miliou. Optical RAM and flip-flops using bit-input wavelength diversity and SOA-XGM switches. J. Lightwave Technol., 30, 3003-3009(2012).

    [12] M. Hill, H. Dorren, T. D. Vries, X. Leijtens, J. D. Besten, B. Smalbrugge, Y. Oei, H. Binsma, G. Khoe, M. Smit. A fast low-power optical memory based on coupled micro-ring lasers. Nature, 432, 206-209(2004).

    [13] A. Trita, G. Mezõsi, M. Sorel, G. Giuliani. All-optical toggle flip-flop based on monolithic semiconductor ring laser. IEEE Photonics Technol. Lett., 26, 96-99(2014).

    [14] P. Bakopoulos, K. Vyrsokinos, D. Fitsios, T. Alexoudi, D. Apostolopoulos, H. Avramopoulos, A. Miliou, N. Pleros. All-optical T-flip-flop using a single SOA-MZI-based latching element. IEEE Photonics Technol. Lett., 24, 748-750(2012).

    [15] Y. Naito, S. Shimizu, T. Kato, K. Kobayashi, H. Uenohara. Investigation of all-optical latching operation of a monolithically integrated SOA-MZI with a feedback loop. Opt. Express, 20, B339-B349(2012).

    [16] C. H. Chen, S. Matsuo, K. Nozaki, A. Shinya, M. Notomi. All-optical memory based on injection-locking bistability in photonic crystal lasers. Opt. Express, 19, 3387-3395(2011).

    [17] J. Sakaguchi, T. Katayama, H. Kawaguchi. All-optical memory operation of 980-nm polarization bistable VCSEL for 20-Gb/s PRBS RZ and 40-Gb/s NRZ data signals. Opt. Express, 18, 12362-12370(2010).

    [18] T. Katayama, T. Ooi, H. Kawaguchi. Experimental demonstration of multi-bit optical buffer memory using 1.55-μm polarization bistable vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron., 45, 1495-1504(2009).

    [19] D. Fitsios, T. Alexoudi, A. Bazin, P. Monnier, R. Raj, A. Miliou, G. T. Kanellos, N. Pleros, F. Raineri. Ultra-compact III–V-on-Si photonic crystal memory for flip-flop operation at 5 Gb/s. Opt. Express, 24, 4270-4277(2016).

    [20] T. Alexoudi, D. Fitsios, G. Kanellos, A. Miliou, A. Bazin, R. Raj, F. Raineri, N. Pleros, P. Monnier. III-V-on-Si photonic crystal nanocavity laser technology for optical static random access memories. IEEE J. Sel. Top. Quantum Electron., 22, 4901410(2016).

    [21] D. K. Loke, J. M. Skelton, T. H. Lee, R. Zhao, T. C. Chong, S. R. Elliott. Ultrafast nanoscale phase-change memory enabled by single-pulse conditioning. ACS Appl. Mater. Interfaces, 10, 41855-41860(2018).

    [22] T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, R. Kojima. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat. Mater., 10, 34-129(2011).

    [23] M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M. L. Gallo, I. Giannopoulos, O. C. Mirédin, R. Mazzarello, A. Sebastian. Monatomic phase change memory. Nat. Mater., 17, 681-685(2018).

    [24] W. Zhang, E. Ma. Single-element glass to record data. Nat. Mater., 17, 654-655(2018).

    [25] F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science, 358, 1423-1427(2017).

    [26] G. M. Zewdie, Y. X. Zhou, L. Sun, F. Rao, V. L. Deringer, R. Mazzarello, W. Zhang. Chemical design principles for cache-type Sc-Sb-Te phase-change memory materials. Chem. Mater., 31, 4008-4015(2019).

    [27] M. S. Arjunan, N. Saxena, A. Mondal, T. Dixit, A. Manivannan. High-stability and low-noise multi-level switching in In3SbTe2 material for phase change photonic memory applications. Phys. Status Solidi Rapid Res. Lett., 15, 2000354(2021).

    [28] C. Zou, J. Zheng, C. Chang, A. Majumdar, L. Y. Lin. Nonvolatile rewritable photomemory arrays based on reversible phase-change perovskite for optical information storage. Adv. Opt. Mater., 7, 1900558(2019).

    [29] W. H. P. Pernice, H. Bhaskaran. Photonic nonvolatile memories using phase change materials. Appl. Phys. Lett., 101, 171101(2012).

    [30] C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, W. H. P. Pernice. Integrated all-photonic nonvolatile multi-level memory. Nat. Photonics, 9, 725-732(2015).

    [31] E. Gemo, S. G. C. Carrillo, C. R. D. Galarreta, A. Baldycheva, C. D. Wright. Plasmonically-enhanced all-optical integrated phase-change memory. Opt. Express, 27, 24724-24737(2019).

    [32] X. Li, N. Youngblood, C. Ríos, Z. G. Cheng, C. D. Wright, W. H. P. Pernice, H. Bhaskaran. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica, 6, 1-6(2019).

    [33] Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun., 10, 1(2019).

    [34] M. S. Arjunan, A. Mondal, A. Das, K. V. Adarsh, A. Manivannan. Multi-level accumulative switching processes in growth-dominated AgInSbTe phase change material. Opt. Lett., 44, 3134-3137(2019).

    [35] A. M. Sreekrishnan, A. Mondal, S. Durai, K. V. Adarsh, A. Manivannan. Impact of crystallization process in multi-level optical switching in Ge2Sb2Te5 and Ag5In5Sb60Te30 phase-change materials. J. Phys. D, 53, 495303(2020).

    [36] Z. G. Cheng, C. Ríos, N. Youngblood, C. D. Wright, W. H. P. Pernice, H. Bhaskaran. Device‐level photonic memories and logic applications using phase‐change materials. Adv. Mater., 30, 1802435(2018).

    [37] R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, P. Minzioni. Coupling strategies for silicon photonics integrated chips. Photon. Res., 7, 201-239(2019).

    [38] H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. D. Waardt, G. D. Khoe. Optical packet switching and buffering by using all-optical signal processing methods. J. Lightwave Technol., 21, 2-12(2003).

    [39] G. C. Carrillo, G. R. Nash, H. Hayat, J. C. Martin, K. Maciej, H. Bhaskaran, C. D. Wright. Design of practicable phase-change metadevices for near-infrared absorber and modulator applications. Opt. Express, 24, 13563-13573(2016).

    [40] D. Lencer, M. Salinga, M. Wuttig. Design rules for phase-change materials in data storage applications. Adv. Mater., 23, 2030-2058(2011).

    [41] C. Ríos, N. Youngblood, Z. Cheng, M. L. Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, H. Bhaskaran. In-memory computing on a photonic platform. Sci. Adv., 5, eaau5759(2019).

    [42] J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, W. H. P. Pernice. Calculating with light using a chip-scale all-optical abacus. Nat. Commun., 8, 1256(2017).

    [43] S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, A. Adibi. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 9, 1189-1241(2020).

    [44] L. Wang, L. Tu, J. Wen. Application of phase-change materials in memory taxonomy. Sci. Technol. Adv. Mater., 18, 406-429(2017).

    [45] J. Siegel, A. Schropp, J. Solis, C. N. Afonso, M. Wuttig. Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses. Appl. Phys. Lett., 84, 2250-2252(2004).

    [46] N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao. Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys., 69, 2849-2856(1991).

    [47] E. Kuramochi, M. Notomi. Phase-change memory. Nat. Photonics, 9, 712-714(2015).

    [48] Y. G. Chen, X. Li, Y. Sonnefraud, I. F. D. Antonio, X. G. Luo, M. H. Hong, S. A. Maier. Engineering the phase front of light with phase-change material based planar lenses. Sci. Rep., 5, 8660(2015).

    [49] N. V. Voshchinnikov, G. Videen, T. Henning. Effective medium theories for irregular fluffy structures: aggregation of small particles. Appl. Opt., 46, 4065-4072(2007).

    [50] C. Rios, M. Stegmaier, Z. G. Cheng, N. Youngblood, C. D. Wright, W. H. P. Pernice, H. Bhaskaran. Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics. Opt. Mater. Express, 8, 2455-2470(2018).

    [51] M. Stegmaier, C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, W. H. P. Pernice. All-photonic nonvolatile memory cells using phase-change materials. IEEE Photonics Conference, 484-485(2015).

    [52] J. Y. Tian, H. Luo, Y. Q. Yang, F. Ding, Y. R. Qu, D. Zhao, M. Qiu, S. I. Bozhevolnyi. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nat. Commun., 10, 396(2019).

    [53] H. W. Tan, G. Liu, H. L. Yang, X. H. Yi, L. Pan, J. Shang, S. B. Long, M. Liu, Y. H. Wu, R. W. Li. Light-gated memristor with integrated logic and memory functions. ACS Nano, 11, 11298-11305(2017).

    Zhihai Liu, Siying Cheng, Yu Zhang, Wei Jin, Xiang Li, Yaru Li, Yaxun Zhang, Xinghua Yang, Jianzhong Zhang, Libo Yuan. Intelligent all-fiber device: storage and logic computing[J]. Photonics Research, 2022, 10(2): 357
    Download Citation