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The typical functions of the optical fiber are communication and sensing. However, the fiber functions need to
extend to meet the requirements of the development of artificial intelligence. This paper achieves an all-fiber
device with storage and logic computing functions using a single-mode fiber and Ge2Sb2Te5 (GST) material.
We use the pulse amplitude modulation (the switching energy is about 50 nJ) to switch the GST state for perform-
ing the eight-level data storage (3-bit). The all-fiber memory device has the advantages of high optical contrast
(about 38%), good reversibility, and high repeatability. We implement the all-optical logic operations (“AND”
and “OR”) by using two memory cells in series and parallel. For the first time, we use the single-mode optical
fiber to realize storage and computing functions, and this intelligent fiber has tremendous application potential in
intelligent optical fiber communication and portends a new paradigm for brain-like computing. © 2022 Chinese
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1. INTRODUCTION

In the era of fifth-generation (5G) mobile communication
[1–3], optical fiber continues to play an essential role due to
superfast transmission speed, tremendous bandwidth, and mul-
tiplexing capability in terms of wavelength [4]. With the rapid
development of high-speed bandwidth services, higher require-
ments have been put forward for the optical fiber and transmis-
sion network’s functions, flexibility, and expansibility [5–7]. It
requires the intelligent transformation in optical communica-
tion while realizing the large-capacity and ultra-high-speed
transmission [8]. Therefore, we try to entrust optical fiber novel
functions, storage, and computing, to serve intelligent optical
communication more competently in addition to what we
know about optical transmission function.

The common approaches to achieving light storage rely on
either the bistability of artificial optical resonances [9–15] or
the inherent bistable characteristics of devices stemming from
their material properties [16–20]. These optical memories
mainly rely on the master–slave configuration [9–12], the feed-
back loop scheme [13–15], or the injection-locking techniques
[16–20], which have high integration density, short memory
access time, and low-energy consumption. However, these
devices are complex and volatile (extra energy is required to

maintain the state of memory). Phase-change materials (PCMs)
are ideal candidates for nonvolatile memories, which have large
contrast in electrical/optical properties between the crystalline
state and the amorphous state. They have been extensively
studied and applied for electronic memories [21–26]. However,
the “electronic rate bottleneck” of electronic memories limits
modern computing technology development. All-optical
memory based on PCMs can mitigate the von Neumann
bottleneck with high speed and low power consumption in data
transmission. The researchers use In3SbTe2 [27], CsPbIBr2
[28], Ge2Sb2Te5 (GST) [29–32], Ge2Sb2Se4Te [33],
Ag5In5Sb60Te30 [34,35], and other PCMs to achieve optical
memories; in particular, the GST has the best performance
in terms of speed and stability. Reference [30] demonstrates
a fast nonvolatile GST-based PCM memory with a capacity
of 3 bits, occupying an area of only 0.4 μm × 0.4 μm, and
the speed was close to 1 GHz. The recent GST memory real-
ized the 12-level all-optical storage and realized logic operations
(logic “OR” and “NAND”) by using the pulse-width modula-
tion method [36]. However, current chip-to-fiber coupling re-
lies on edge or grating couplers with limitations in alignment
tolerances, efficiency, and bandwidth, respectively [37], so the
waveguide-based device is difficult to make compatible with
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optical fiber communication systems. We design a PCMs-based
all-fiber memory, which can couple light to and from optical
fiber communication network with large efficiency.

Herein, we demonstrate all-fiber memory by combining the
ordinary single-mode optical fiber (Corning SMF-28), GST,
and indium-tin-oxide (ITO) (as the capping layer). Since GST
has a significant contrast in optical reflectivity between the
amorphous state (logic state 0, low-reflectivity state) and the
crystalline state (logic state 1, high-reflectivity state), informa-
tion is encoded as the reflectivity of the GST. It is stored in the
phase state of GST. We use pump pulse (λ1 � 1550 nm) with
a fixed pulse width to switch the state of GST (the low-energy
pulse converts GST to the crystal state, and the high-energy
pulse converts GST to the amorphous state), and the switching
energy of the all-fiber memory is as low as about 50 nJ. We use
continuous light (λ2 � 1530 nm) whose energy is much lower
(0.2 mW) than the switching energy to achieve data reading.
The operation principle of the all-optical fiber memory is
shown in Fig. 1. We perform eight-level storage (3-bit) with
high repeatability and excellent reversibility using the pulse am-
plitude modulation (PAM) method, and the optical contrast is
about 38%. Moreover, each memory level has an associated
PAM parameter that will always result in written memory
level, whatever the starting state. We further explore its appli-
cation to the provision of a nonvolatile logical fiber calculator,
achieving “AND” and “OR” computations. The presented
all-fiber memory opens new routes toward the intelligent fiber
system [38].

2. PRINCIPLE

GST is a kind of chalcogenide phase-change material. It has a
wide range of applications in near-infrared absorbers and mod-
ulators [39], data storage [40], and data calculation [41,42].
GST has two phases corresponding to the amorphous structure
(a-GST) and cubic structure (c-GST). The two phases have
very different material properties, thus providing the contrast
requirements of distinguished logical states [43]. The GST can

transform phases with electrical pulses or light pulses. People
use significantly different electrical/optical properties in differ-
ent phases to achieve data storage.

The scanning electron microscope images of our all-fiber
memory cell are shown in Figs. 2(a)–2(d). The thicknesses
of the GST and ITO are 120 nm and 30 nm, respectively. ITO
prevents GST from being oxidized. Our all-fiber storage unit
realizes optical storage by using the difference in reflectance be-
tween a-GST and c-GST. The scheme is the same as the prin-
ciple used in conventional optical storage (where reflectivity is
modulated). The crystalline state (which we term “level 1”)
exhibits higher reflectivity than the amorphous state (“level 0”)
[44,45]. Therefore, we define the conversion from a-GST to
c-GST (crystallization) as the “write” process and the conver-
sion from c-GST to a-GST (amorphization) as the “erase” pro-
cess; the principle of GST transformation is shown in Fig. 1.
We simulate a single 10 ns, 47 mW optical pulse train (the
number is 100, and the repetition rate is 1 kHz) to heat
GST to 580 K (see Fig. 3) to achieve the crystallization temper-
ature of GST (500–600 K), and the 48.5 mW optical pulse can
heat GST to an amorphous state, reaching the amorphous tem-
perature of GST (890 K) [46].

Multi-level storage requires the cell reflectivity to be pro-
grammed with higher accuracy as compared to bi-level storage.
We must precisely control the crystal fraction of the active GST
material to achieve the required cell reflectivity value with ad-
equate accuracy [47]. We select a 15 μm × 15 μm square area of
GST, and the area where the temperature surpasses the melting
temperature of GST (890 K) is shown in dark red and denotes
the final amorphous region of the memory cell after a single
optical pulse train. With the increase of the pulse power,
the amorphous area of GST gradually becomes more consid-
erable. In this paper, we assume that the two states with the
largest reflectivity differences are completely crystalline and
completely amorphous. We define the amorphous ratio of
the fully crystallized state as “0” and the amorphous ratio of “1”
when the dark red region is the largest. We can obtain the
amorphous area of GST by taking boundary points through

Fig. 1. Operation principle of the all-fiber memory device. The
fiber memory cell consists of fiber, GST, and ITO (as the capping
layer). The information is stored in the phase state of GST and en-
coded as the GST’s reflectivity (amorphous state: logic state 0, low-
reflectivity state; crystalline state: logic state 1, high-reflectivity state).
Pump pulse (λ1 � 1550 nm) and probe light (λ2 � 1530 nm) into
the optical fiber storage unit to write/erase and read the information.

Fig. 2. Scanning electron microscope (SEM) images of the all-fiber
memory cell. (a) The SEM image of GST and ITO on the optical fiber
end face; the optical fiber diameter is 125 μm. (b)–(d) The fiber end
face has two layers of film structure (GST and ITO), and the thickness
of GST and ITO is 120 nm and 30 nm, respectively.
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simulation software. The permittivity of partially amorphous
GST can be calculated from effective permittivity approxi-
mated by an effective-medium theory [48,49]:

ε�p� − 1
ε�p� � 2

� p ×
εa − 1

εa � 2
� �1 − p� × εc − 1

εc � 2
, (1)

where εc and εa are the complex permittivity of c-GST and a-
GST, respectively, and p is the degree of amorphization (ratio of
partially amorphous area to completely amorphous area).
Moreover, the permittivity can be calculated from the refractive
indices of GST by ε0.5 � n� iκ, where n is the real part of the
refractive index of GST, and κ is the imaginary part of the re-
fractive index of GST. Thus, the different levels of amorphiza-
tion of GST lead to various values of ε�p�, leading to different
levels of reflectivity. Figure 3 shows the reflectance of GST with
different amorphous proportions, which is normalized. The si-
mulated results indicate that the reflectance is inversely propor-
tional to the amorphous area of GST.

3. RESULTS AND DISCUSSION

Our all-fiber memory device consists of a GST thin film pas-
sivated with a layer to prevent GST from oxidizing (ITO) and a
single-mode fiber. GST is deposited on the end face of the fiber
by radio frequency (RF) sputtering (50W RF power, 30 mTorr
Ar atmosphere, and 9 × 10−4 Torr base pressure), and ITO is
deposited by direct current (RF) sputtering (10 W power,
15 mTorr Ar atmosphere, and 9 × 10−4 Torr base pressure).
All depositions are performed at room temperature.

We use a pulsed laser (wavelength: λ1 � 1550 nm) to
switch the state of the fiber memory, and we use a continu-
ous-wave laser (wavelength: λ2 � 1530 nm) to monitor the
optical reflection (optical memory level). The optical setup
in the experimental measurements is sketched in Fig. 4. The
probe signal is attenuated by an attenuator (0.2 mW) to reduce
potential drifts caused by the thermal-optical effect of GST.
Then the two optical beams are injected into the all-fiber
memory cell through the optical coupler and the circulator
(CIR). The fiber reflects the pump pulses and the probe signal.
The optical pulses are filtered by the bandpass filter. A data

acquisition card connects a photodetector to a computer to
monitor the all-fiber memory’s reflection in real time.

The optical reflection of the a-GST is defined as the base-
line; the pulse train (the number is 100 and the repetition rate
is 1 kHz) with a fixed width of 10 ns and different peak power
(Pi, i � 2, 3, 4, 5, 6, 7, 8) can switch the state of fiber memory.
The reflectivity change is defined as ΔRi � Ri − R1, where Ri
(i � 2, 3, 4, 5, 6, 7, 8) is the final reflectivity after laser irra-
diation, and R1 is the initial reflectivity before laser irradiation
(lower reflection). The relative reflectivity change is expressed
as �ΔRi∕R1� × 100%, and the different relative reflectivity
presents the different levels. We define the P8 level as entirely
crystalline and the P1 level as entirely amorphous; other levels
are partly crystalline or partly amorphous.

Here the powers of different optical pump pulses are
P1 � 54.5 mW, Pi � 53.5, 52.5, 51.5, 50.5, 49.5, 48.5,
47 mW (i � 2, 3, 4, 5, 6, 7, 8) in the experiment, and the
optical power increase from P8 to P7 is more than the others,
which can make the result of the experiment have a better linear
relationship. The corresponding energies are 54.5, 53.5, 52.5,
51.5, 50.5, 49.5, 48.5, and 47.0 nJ.

Levels 1 to 8 are sequentially achieved by decreasing the
power from P1 to P8. The PAM switching can also work vice
versa for the amorphization. For example, levels 8 down to 1 are
sequentially achieved by increasing the power from P8 to P1

[Fig. 5(a)]. Importantly, we can use a pulse sequence with a
power of Pi to switch to any energy level i, and this switch does
not consider the state of GST. Moreover, the reflectivity con-
trast is about 38% between levels 1 and 8. The result demon-
strates that our all-fiber memory cell has good reversibility and
high contrast in optical reflection. Figure 5(c) also demonstrates
that the same level has the same corresponding P1 and Pi, and
each level is not affected by the previous state. It implies that
every level can be accessed from all others, with accurate reflec-
tion levels and remarkable repeatability.

Level 6, for example, can be achieved from the level 1, 5, or
8 with the power of pump pulse of P6. Due to our unique fiber
reflection structure (different from the waveguide structure),
the impact of a pulse sequence on GST may be divided into

Fig. 4. Schematic of the optical measurement setup using probe/
pump strategy. The pump laser (wavelength: λ1 � 1550 nm) and
the probe laser in the CW mode (wavelength: λ2 � 1530 nm) are
guided in/out of the memory cell. The output signal is filtered by
a bandpass filter (BPF), connecting to a computer (PC) that monitors
the reflectivity of the fiber memory at all times. The inset shows the
rendered 3D picture of an all-fiber memory cell.

Fig. 3. Simulated temperature distribution in the GST memory cell
after a 10 ns programming pulse and simulated reflectivity and crys-
talline fraction as functions of power. The dark red region marks the
area surpassing the melting temperature of GST (890 K). The optical
reflectivity of GST increases (decreases) as the crystalline fraction in-
creases (decreases). The inset shows the model diagram of pulsed light
heating GST.

Research Article Vol. 10, No. 2 / February 2022 / Photonics Research 359



two parts. The first part of the energy heats the GST into a
crystalline state (initialization process). During this conversion
process, the absorption coefficient k of GST gradually in-
creases, so the energy acting on GST gradually will increase.
The power is large enough to make the GST amorphized,
so the subsequent pulses gradually accumulate to convert
the GST to the amorphous state. The final switching level de-
pends on the power of the light pulse [50]; the higher the op-
tical pulse power, the greater the degree of amorphization of
GST, resulting in lower reflectivity. Hence, the level and power
have a “one-to-one” relationship between values, so the all-fiber
memory can realize arbitrary switching by using the power of
the optical pump pulse (Pi) corresponding to this level. When
the initial complex refractive index of the GST is relatively
large, the energy of the initial pulses is easier to act on, so
the number of pulses will be small. Conversely, when the initial
complex refractive index is small, more pulses are required to
act on the GST. Due to the state’s difference after initialization,
the same state may still be achieved even if the number of ac-
cumulated pulses is different. From Figs. 5(a) and 5(c), we can
see that our multi-level switching has a small drifting.

We repeatedly switch GST states between levels 1 and 8 to
further describe the storage performance. Figure 5(b) shows the
result of repeated switching over 40 cycles, demonstrating that
the all-optical data storage on the fiber end face has high repeat-
ability. PCMs have operation cycles up to 1011 and stay in the
state for many years until sufficiently enormous energy is
applied to PCMs [51]. We repeat the same series of pulses

10 times and plot a histogram of the error between the target
reflectivity and actual reflectivity [see Fig. 5(d)]. It can be seen
that the energy drift error of our device is within �1.5%. We
also have supplemented the experiment for investigating the
thermo-optical effect of GST, as shown in Fig. 5(e). It can
be seen for a single pulse that the response time of the amorph-
ization process is 158 ns, and the response time of the crystal-
lization process is 145 ns.

We can use memory cells to manufacture all-fiber logic gates
(“AND,” “OR”), which can meet the requirement of next-gen-
eration optical networks [52]. We name the present optical
memory as “memlogic,” which is short for memory logic with
both nonvolatile configurations of logic functions and nonvola-
tile logic output results [53].

Optical pulses of the power (P8 and P1) corresponding to
the entirely crystalline state (level 8) and entirely amorphous
state (level 1) are used as the logic input “1” and the logic input
“0” (the two logic inputs have the same pulse width
W � 10 ns); the enormous optical contrast makes the two
logic inputs more easily distinguished. As a result, the logic out-
put has a higher contrast ratio when carrying out logic oper-
ations. Here, we define the normalized reflection (NR) of
the two input pulses passing through two memlogic units as
the logic output.

Figure 6(a) shows the logic operation principle of typical
memlogic cells. First, as shown in Fig. 6(a), we connect two
memlogic cells in series to perform the “AND” logic operation.
Next, we connect two memlogic cells in parallel and combine

Fig. 5. Measurements of multi-level operation using the PAM programming technique. (a) Experimental demonstration of eight different levels
in the all-fiber device with the relative change in reflection (ΔR∕Ri) recorded. A single pulse train with widthW � 10 ns is implemented to switch
the photonic memory, and each level is reached by a determined optical power, from 54.5 to 47 mW. P1 � 54.5 mW, Pi � 53.5, 52.5, 51.5, 50.5,
49.5, 48.5, 47 mW (i � 2, 3, 4, 5, 6, 7, 8). (b) Multiple repetitions of the same switching cycle (levels 8 and 1) as in (a). Moreover, the 40 cycles
verified a confidence interval of �2.2%. (c) Accessing same levels but in random order featuring intra-level switching. Each level can also be
independently reached and erased, with very accurate control of the reflection levels and remarkable repeatability. (d) Histogram plots of the differ-
ence between the desired reflectivity level and the actual reflectivity level. (e) Response time of a single pulse amorphization and crystallization; the
time is 158 ns and 145 ns, respectively (the pulse width is 10 ns).
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two outputs with a coupler to achieve the “OR” logic opera-
tion. Each memlogic unit must be connected to a CIR because
our all-fiber memory measures the reflection of the fiber. The
reflectivities of two series memlogic units are defined as Rin1,
Rin2, and the reflectivities of “OR” gate memlogic units are de-
fined as Rin3, Rin4, respectively. According to the series and par-
allel characteristics of two memlogic units, the value of the
reflectivity output after series (Rs) and parallel (Rp) connections
can be expressed as Rs � Rin1 × Rin2; Rp � Rin3 � Rin4. The
input information is stored in the memlogic cell and is read
by a continuous wavelength light. We conduct an optical eras-
ing process with both memlogic cells to ensure they are in the
amorphous state before performing the logic calculation. We
take the “AND” gate in series as an example. We use two in-
dependent optical pulses as optical inputs (Pin1, Pin2), and the
two pulses of fixed width (10 ns) are used to program digital
inputs “0,” “1,” corresponding to pulse amplitudes of
54.5 mW, 47 mW, respectively, and are applied to memlogic
cells. As shown in Fig. 6(b), we can obtain distinct NR values
with different digit combinations of Pin1 and Pin2 (Pin3 and
Pin4). We compared the value of NR with the reference value
of 0.5 (red line); the logic output (Y1 and Y2) of the optical
memory can be either “0” or “1” (below and above the refer-
ence line). When the inputs are “00,” “01,” “10,” and “11”,
respectively, the NRs are 0.00, 0.29, 0.28, and 0.99 in the logic
device of the “AND” gate, and the outputs are 0.01, 0.76, 0.78,

and 0.96 in the logic device of the “OR” gate. We set the refer-
ence line to 0.5. Thus, the logic “AND” and logic “OR” out-
puts are “0,” “0,” “0,” “1,” and “0,” “1,” “1,” “1”, respectively.
The truth tables of the memlogic cells are shown as Figs. 6(c)
and 6(d), corresponding to the results of the traditional elec-
tronic “AND” and “OR” gates, respectively.

Importantly, when the logic inputs of Pin1 and Pin2 are “1,”
“0” or “0,” “1”, respectively, the values of NR are different be-
cause the reflectivity contrast is different of two memlogic
cells. Moreover, the differences between the two outputs will
increase because of the increasing difference in the memlogic
units’ reflectivity contrast. However, the final logic results
are not affected by this slight difference. Finally, it is worth
mentioning that we can extend our logic devices to achieve
more complex optical logic functions (normalizing reflectivity,
a standardized device is added after each logic gate). Therefore,
our fiber memlogic cells have excellent potential in all-optical
networks.

4. CONCLUSION

In summary, we have shown the demonstration of 3-bit data
storage with an all-fiber memory cell. We use the PAM switch-
ing technique to realize partial crystallization of the PCM
memory cell, and we can control the reflectivity in the GST
layer by pulse power (∼50 nJ). Furthermore, we show the

Fig. 6. Results of logical operation experiment. (a) Schematic of an optical logic device based on the fiber memory with two signal inputs Pin1 and
Pin2 (Pin3 and Pin4). The “AND” gate is realized by using two storage logic units in series, and the “OR” gate is realized by combining the output
signals of the two units with the coupler after two storage logic operation units are connected in parallel. (b) The normalized reflectivity outputs of
the memlogic with different input combinations. The output is defined as logic “1” above the reference value. Moreover, the diagram on the left is
the relationship between the input and output of the “AND” gate, and the diagram on the right is the relationship between the input and output of
the “OR” gate. (c), (d) The truth table of the basic logic “AND,” “OR” calculation. Output at four different combinations of input states: (“1,” “1”);
(“1,” “0”); (“0,” “1”); and (“0,” “0”).
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readily and directly switching ability between the multiple
memory levels, with high accuracy of the readout signal and
excellent repeatability. Moreover, we use the memlogic units
in series and parallel to realize the essential logic operation
(“AND” and “OR”), and we can recognize more complex logic
operations by using more fiber optic memlogic cells.

The results are a broad and fundamental step toward a fast,
low-power fiber memory for applications. The all-fiber non-
volatile multi-level memory can have applications such as neu-
romorphic computing and in-memory computing. The
primary logic gate is expected to realize more complex logic
operations. The application of the memlogic unit in optical fi-
ber communication networks is expected to lead to a new rev-
olution in optical fiber communication technology.
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