• Laser & Optoelectronics Progress
  • Vol. 60, Issue 19, 1900006 (2023)
Xu Liang1、*, Qihui Shen1、2, Jingzhen Shao1, and Ying Lin1
Author Affiliations
  • 1Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • 2University of Science and Technology of China, Hefei 230026, Anhui ,China
  • show less
    DOI: 10.3788/LOP221521 Cite this Article Set citation alerts
    Xu Liang, Qihui Shen, Jingzhen Shao, Ying Lin. Discharge-Pumped Excimer Laser Technologies and Applications[J]. Laser & Optoelectronics Progress, 2023, 60(19): 1900006 Copy Citation Text show less
    References

    [1] Basting D, Stamm U. The development of excimer laser technology-history and future prospects[J]. Zeitschrift Für Physikalische Chemie, 215, 75-99(2001).

    [2] Lou Q H. Progress of excimer lasers and its applications[J]. Chinese Journal of Lasers, 21(1994).

    [3] Basov N G, Danilychev V A, Popov Y M et al. Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam[J]. JETP Letters, 12, 329-331(1970).

    [4] Basting D, Marowsky G[M]. Excimer laser technology(2005).

    [5] Yu Y S, You L B, Liang X et al. Progress of excimer lasers technology(invited paper)[J]. Chinese Journal of Lasers, 37, 2253-2270(2010).

    [6] Liu J R, Zhao X Q. High power excimer laser technology and its applications[J]. Modern Applied Physics, 10, 3-17(2019).

    [7] Turner T P, Jones J E, Czuchlewski S J et al. Configuration and performance of the Los Alamos Aurora KrF/ICF laser system[J]. Proceedings of SPIE, 1225, 23-33(1990).

    [8] Divall E J, Edwards C B, Hirst G J et al. Titania-a 1020 W cm-2 ultraviolet laser[J]. Journal of Modern Optics, 43, 1025-1033(1996).

    [9] Owadano Y, Okuda I, Matsumoto Y et al. Overview of ‘Super-ASHURA’ KrF laser program[J]. Fusion Engineering and Design, 44, 91-96(1999).

    [10] Obenschain S P, Bodner S E, Colombant D et al. The Nike KrF laser facility: performance and initial target experiments[J]. Physics of Plasmas, 3, 2098-2107(1996).

    [11] Zvorykin V D, Lebo I G. Laser and target experiments on KrF GARPUN laser installation at FIAN[J]. Laser and Particle Beams, 17, 69-88(1999).

    [12] Xiang Y H, Shan Y S, Gong K et al. Experimental investigations of beam smooth technique for high power KrF laser system[J]. Atomic Energy Science and Technology, 37, 101-105(2003).

    [13] Ma W Y, Hu F M, Ma J L et al. Optimization of experimental conditions for Heaven 1 pre-amplifier[J]. High Power Laser&Particle Beams, 13, 120-122(2001).

    [14] Zhang C B, Long T. Effect of amplified spontaneous emission in Heaven-I pre-amplifier[J]. High Power Laser & Particle Beams, 14, 651-654(2002).

    [15] Yu L, Liu J R, Yi A P et al. Development of optically pumped XeF(C-A) laser[J]. Engineering Sciences, 11, 38-43(2009).

    [16] Yu L, Ma L Y, Yi A P et al. Technology of XeF blue-green laser with repetitive rate[J]. High Power Laser and Particle Beams, 23, 1839-1842(2011).

    [17] Shen Y L, Zhu F, Yu L et al. High power 1 nm narrow line width repeat frequency XeF(C-A) Blue laser[C], 216(2016).

    [18] Shan Y S, Wang N Y, Ma J L et al. A six-beam high-power KrF excimer laser system with energy of 100 J/23 ns[J]. Laser and Particle Beams, 20, 123-127(2002).

    [19] Zhao X Q, Liu J R, Yi A P et al. Progress on high power excimer laser in NINT[J]. Proceedings of SPIE, 9255, 925523(2015).

    [20] Lou Q H, Xu J, Fu S F et al[M]. Pulsed discharge gas laser(1993).

    [21] Yu Y S, Fang X D, Li H et al. Discharge-pumped 100 W XeCl excimer laser[J]. Chinese Journal of Quantum Electronics, 13, 329-331(1996).

    [22] Lou Q H. The effects of pulse discharge duration on the output of XeCI excimer laser[J]. Laser Journal, 7, 195-199(1986).

    [23] Wang C S, Nan Y Z, Wu H L et al. Dye laser without cavity pumped by a XeCI excimer laser and tunab le dye laser at ultraviolet-visible range[J]. Laser Journal, 8, 55-58(1987).

    [24] Wang Y Q, Guo Z H, Li Z G. Design of magnetic switch for excimer laser[J]. Laser Technology, 20, 9-13(1996).

    [25] Elliott D J, Senguta U K. Excimer lasers for deep UV lithography[J]. Proceedings of SPIE, 1377, 6-17(1991).

    [26] Sandstrom R L. Measurements of beam characteristics relevant to DUV microlithography on a KrF excimer laser[J]. Proceedings of SPIE, 1264, 505-519(1990).

    [27] Lokai P, Rebhan U, Oesterlin P et al. High-repetition-rate KrF lithography excimer laser with narrow bandwidth below 2 pm[J]. Proceedings of SPIE, 1264, 496-504(1990).

    [30] Liang X, You L B, Wang T et al. Excimer pulse energy stabilization realized by charging voltage realtime adjusting[J]. Chinese Journal of Lasers, 37, 374-378(2010).

    [31] Wang X S, Yu Y S, Wang Q S et al. A discharge-pumped KrF excimer laser with high efficiency[J]. Chinese Journal of Lasers, 38, 0102001(2011).

    [32] Liu Y, Fang X D, Liang X et al. 308 nm XeCl excimer laser system used for treatment of vitiligo[J]. Chinese Journal of Lasers, 39, 0602002(2012).

    [33] Liang X. Deep-UV excimer lasers products: ExciMAS-P20/P200/B200[EB/OL]. http://www.bulletin.cas.cn/publish_article/2021/Z1/2021Z1117.htm

    [34] Injeyan H, Goodno G D[M]. High Power Laser Handbook(2011).

    [35] Liang X, Zhao D L, Lin Y et al. High repetition rate and high accuracy capacitor charging pulse power supply based on controllable LC series resonance[J]. High Voltage Engineering, 44, 3022-3027(2018).

    [36] Ma Y L, Liang X, Zhao D L et al. Design of control system in electromagnetic interference environment of discharge excimer laser[J]. Laser Technology, 41, 210-212(2017).

    [37] Fisher C H, Smilanski I, Petr R A et al. Magnetic switching techniques for fast discharge lasers[C], FE4(1983).

    [38] Shimada T, Obara M, Noguchi A. An all solid-state magnetic switching exciter for pumping excimer lasers[J]. Review of Scientific Instruments, 56, 2018-2020(1985).

    [39] Delmdahl R F, Nikolaus B. Solid state pulsed high-repetition-rate excimer lasers[J]. Proceedings of SPIE, 5339, 284-291(2004).

    [40] Ness R, Melcher P C, Smith B et al. Performance characterization for an excimer laser solid-state pulsed power module (SSPPM) after 20B shots[J]. IEEE Transactions on Plasma Science, 28, 1324-1328(2000).

    [41] Ness R, Melcher P, Ferguson G et al. A decade of solid state pulsed power development at Cymer Inc[C], 228-233(2004).

    [42] Rokitski R, Fleurov V, Bergstedt R et al. Enabling high volume manufacturing of double patterning immersion lithography with the XLR 600ix ArF light source[J]. Proceedings of SPIE, 7274, 72743O(2009).

    [43] Tsushima H, Yoshino M, Ohta T et al. Reliability report of high power injection lock laser light source for double exposure and double patterning ArF immersion lithography[J]. Proceedings of SPIE, 7274, 72743L(2009).

    [44] Smith C H. Magnetic pulse compression by metallic glasses[J]. Journal of Applied Physics, 64, 6032-6034(1988).

    [45] Bolotin I, Mamaev G, Mamaev S et al. Influence of the technological process conditions to parameters of magnetic cores from ribbon amorphous alloys[C], 1482-1484(1999).

    [46] Liu J R, Yi A P, Hu Z Y et al[M]. Excimer laser technology and applications(2009).

    [47] Hermsen T. Note on the design of electrode profiles for discharge lasers[J]. Optics Communications, 64, 59-62(1987).

    [48] Stappaerts E A. A novel analytical design method for discharge laser electrode profiles[J]. Applied Physics Letters, 40, 1018-1019(1982).

    [49] Chang T Y. Improved uniform- field electrode profiles for TEA laser and high- voltage application[J]. Review of Scientific Instruments, 44, 405-407(1973).

    [50] Ernst G J. Uniform-field electrodes with minimum width[J]. Optics Communications, 49, 275-277(1984).

    [51] Zhu N W, Fang X D, Liang X et al. Simulation study on electric field of Chang electrodes in excimer lasers[J]. Laser Technology, 41, 680-683(2017).

    [52] Turner M M. Relations between preionization density distribution, electrode design, and efficiency in high-pressure discharge-excited gas lasers[J]. Applied Physics Letters, 63, 2866-2868(1993).

    [53] Levatter J I, Lin S C. Necessary conditions for the homogeneous formation of pulsed avalanche discharges at high gas pressures[J]. Journal of Applied Physics, 51, 210-222(1980).

    [54] Burnham R, Djeu N. Ultraviolet-preionized discharge-pumped lasers in XeF, KrF, and ArF[J]. Applied Physics Letters, 29, 707-709(1976).

    [55] Fieret J. Aerodynamic aspects of a corona-preionized high-repetition-frequency excimer laser[J]. Proceedings of SPIE, 1225, 122-130(1990).

    [56] Miyazaki K, Hasama T, Yamada K et al. Efficiency of a capacitor-transfer-type discharge excimer laser with automatic preionization[J]. Journal of Applied Physics, 60, 2721-2728(1986).

    [57] Sanz F E, Perez J M G. Peaking capacitor in an incomplete corona surface discharge preionized TEA CO2 laser[J]. IEEE Journal of Quantum Electronics, 27, 891-894(1991).

    [58] Saito T, Ito S, Tada A. Long lifetime operation of an ArF-excimer laser[J]. Applied Physics B, 63, 229-235(1996).

    [59] von Bergmann H M, Bredenkamp G L, Swart P H. High repetition rate high power excimer lasers[J]. Proceedings of SPIE, 1023, 20-24(1989).

    [60] Zhu N W, Fang X D. FLUENT-based numerical simulation of gas flow field of excimer laser[J]. Chinese Journal of Lasers, 43, 0901007(2016).

    [61] Veselovskii I, Barchunov B. Excimer-laser-based lidar for tropospheric ozone monitoring[J]. Applied Physics B, 68, 1131-1137(1999).

    [62] Delmdahl R. High-spatial coherence excimer laser for the production of fiber Bragg gratings[J]. Proceedings of SPIE, 6106, 61060C(2006).

    [63] McKee T J, Boyd G T. Performance comparison of positive branch unstable resonator cavities for excimer lasers[J]. Applied Optics, 27, 1840-1843(1988).

    [64] Zhao Z S, Hu X J, Shen D L et al. An excimer laser operating on unstable resonator[J]. Chinese Journal of Quantum Electronics, 6(1989).

    [65] Lou Q H. Improvement of excimer laser output characteristics by using a hybrid unstable resonator[J]. Applied Laser, 4, 158-160(1984).

    [66] Li Y L, Liu X H, Wu Q. Evolution and Updates of Advanced Photolithography Technology[J]. Laser & Optoelectronics Progress, 59, 0922006(2022).

    [67] Duffey T P, Embree T J, Ishihara T et al. ArF lasers for production of semiconductor devices with CD<0.15 μm[J]. Proceedings of SPIE, 3334, 1014-1020(1998).

    [68] Rokitski R, Ishihara T, Rao R et al. High reliability ArF light source for double patterning immersion lithography[J]. Proceedings of SPIE, 7640, 76401Q(2010).

    [69] Yoshino M, Nakarai H, Ohta T et al. High-power and high-energy stability injection lock laser light source for double exposure or double patterning ArF immersion lithography[J]. Proceedings of SPIE, 6924, 69242S(2008).

    [70] Miao X Q, Huli L, Chen H et al. Double patterning combined with shrink technique to extend ArF lithography for contact holes to 22 nm node and beyond[J]. Proceedings of SPIE, 6924, 69240A(2008).

    [71] Cacouris T, Conley W, Thornes J et al. New ArF immersion light source introduces technologies for high-volume 14 nm manufacturing and beyond[J]. Proceedings of SPIE, 9426, 942618(2015).

    [72] Pirati A, Peeters R, Smith D et al. EUV lithography performance for manufacturing: status and outlook[C], 77-79(2017).

    [73] Cacouris T, Rechtsteiner G, Conley W. Next-generation DUV light source technologies for 10nm and below[J]. Proceedings of SPIE, 10147, 1014718(2017).

    [74] Fan Y Y, Zhou Y, Guo X et al. Development status and trend of China’s excimer laser technology[J]. Strategic Study of CAE, 22, 29-34(2020).

    [76] Roman Y, Kanawade D, Gillespie W et al. Advances in DUV light source sustainability[J]. Proceedings of SPIE, 10147, 101471Y(2017).

    [77] Fleurov V B, Brown D J W et al. Dual-chamber ultra line-narrowed excimer light source for 193-nm lithography[J]. Proceedings of SPIE, 5040, 1694-1703(2003).

    [78] Wakabayashi O, Ariga T, Kumazaki T et al. Beam quality of a new-type MOPO laser system for VUV laser lithography[J]. Proceedings of SPIE, 5377, 1772-1780(2004).

    [79] Zhang H B, Yuan Z J, Zhou J et al. Optimal design of prism beam expander in line narrowed excimer laser cavity[J]. Chinese Journal of Lasers, 38, 1102008(2011).

    [80] Lou Q H, Yuan Z J, Zhang H B. History and present situation of lithography technology[J]. Science, 69, 32-36(2017).

    [81] Ershov A I, Ness R M. Timing control for two-chamber gas discharge laser system[P/OL]. https://patents.google.com/patent/US6865210

    [82] Wang C, Liang X, Lin Y et al. Synchronization trigger design of MOPA structure excimer laser[J]. Infrared and Laser Engineering, 50, 20200516(2021).

    [83] Paetzel R, Herbst L, Simon F. Laser annealing of LTPS[J]. Proceedings of SPIE, 6106, 61060A(2006).

    [84] Masters A, Geuking T. Beam-shaping optics expand excimer-laser applications[J]. Laser Focus, 41, 99-103(2005).

    [85] Hsieh K L, Cheng K N, Wang P F et al. P-50: application of high temperature debonding layer in the fabrication of flexible AMOLED displays[J]. SID Symposium Digest of Technical Papers, 47, 1324-1327(2016).

    [86] Huang Y, Liang X, Zhu N W et al. Development of laser lift-off technology used in the field of flexible electronics[J]. Laser Technology, 42, 440-445(2018).

    [87] Chaji R, Fathi E, Zamani A. Essentials of micro LED display production[J]. SID Symposium Digest of Technical Papers, 51, 323-327(2020).

    [88] Chen Z, Yan S K, Danesh C. MicroLED technologies and applications: characteristics, fabrication, progress, and challenges[J]. Journal of Physics D: Applied Physics, 54, 123001(2021).

    [89] Wagner U, Liebers R, Gebhardt M. Laser technologies for the production of microLEDs for next-generation displays[J]. Proceedings of SPIE, PC12024, PC1202404(2022).

    [90] Marinov V R. 52-4: laser-enabled extremely-high rate technology for µLED assembly[J]. SID Symposium Digest of Technical Papers, 49, 692-695(2018).

    [91] Zhang B, Haupt O. 55.4: MicroLED-high throughput laser based mass transfer technology[J]. SID Symposium Digest of Technical Papers, 52, 664-667(2021).

    [93] Herbst L, Delmdahl R F, Paetzel R. Average power scaling of UV excimer lasers drives flat panel display and lidar applications[J]. Proceedings of SPIE, 8238, 82380A(2012).

    [94] Heitzmann J, Binder P S, Kassar B S et al. The correction of high myopia using the excimer laser[J]. Archives of Ophthalmology, 111, 1627-1634(1993).

    [95] Sugar A. Ultrafast (femtosecond) laser refractive surgery[J]. Current Opinion in Ophthalmology, 13, 246-249(2002).

    [96] Hadi S M, Spencer J M, Lebwohl M. The use of the 308-nm excimer laser for the treatment of vitiligo[J]. Dermatologic Surgery, 30, 983-986(2004).

    [97] Asawanonda P, Anderson R R, Chang Y et al. 308-nm excimer laser for the treatment of psoriasis: a dose-response study[J]. Archives of Dermatology, 136, 619-624(2000).

    [98] Passeron T, Ortonne J P. Use of the 308-nm excimer laser for psoriasis and vitiligo[J]. Clinics in Dermatology, 24, 33-42(2006).

    [99] Xiao J, Guo A Y, Zeng Q H et al. Advances of 308 nm excimer laser in the treatment of vitiligo[J]. Acta Laser Biology Sinica, 25, 13-20(2016).

    [100] Zhao D L, Li W J, Liang X et al. Study on energy stability for excimer laser skin therapeutic apparatus[J]. Infrared and Laser Engineering, 46, 1206001(2017).

    [101] Taylor R S, Singleton D L, Paraskevopoulos G. Effect of optical pulse duration on the XeCl laser ablation of polymers and biological tissue[J]. Applied Physics Letters, 50, 1779-1781(1987).

    [102] Appelman Y E A, Piek J J, David G K et al. Randomised trial of excimer laser angioplasty versus balloon angioplasty for treatment of obstructive coronary artery disease[J]. The Lancet, 347, 79-84(1996).

    [103] Gu H M, Zhang H, Hu X J et al. The experimental results on the ablation of various biological tissues using a XeCl excimer laser[J]. Acta Laser Biology Sinica, 7, 195-197(1998).

    [104] Bilodeau L, Fretz E B, Taeymans Y et al. Novel use of a high-energy excimer laser catheter for calcified and complex coronary artery lesions[J]. Catheterization and Cardiovascular Interventions, 62, 155-161(2004).

    [105] Bordachar P, Defaye P, Peyrouse E et al. Extraction of old pacemaker or cardioverter-defibrillator leads by laser sheath versus femoral approach[J]. Circulation. Arrhythmia and Electrophysiology, 3, 319-323(2010).

    [106] Ambrosini V, Sorropago G, Laurenzano E et al. Early outcome of high energy Laser (Excimer) facilitated coronary angioplasty ON hARD and complex calcified and balloOn-resistant coronary lesions: LEONARDO Study[J]. Cardiovascular Revascularization Medicine, 16, 141-146(2015).

    [108] Liu W, Zhou Y J, Zhao Y X et al. Treatment of complex coronary lesions by excimer laser coronary atherectomy: the initial experiences in China[J]. Chinese Journal of Interventional Cardiology, 24, 511-514(2016).

    [109] Yu Y, Zhao Y X, Shi D M et al. Application of excimer laser in interventional therapy of complex coronary artery disease via radial artery[J]. Chinese Journal of Interventional Cardiology, 24, 587-591(2016).

    [110] Gu Y Q, Guo L R, Qi L X et al. Excimer laser atherectomy combined with drug-eluting balloon angioplasty for the treatment of chronic ischemia of lower limbs: preliminary results in three patients[J]. Journal of Interventional Radiology, 26, 10-14(2017).

    [111] Sowada U, Kahlert H J, Voss F et al. Excimer laser fiber coupling using pulse lengths between 15 and 300 ns[J]. Proceedings of SPIE, 1023, 246-248(1989).

    [112] Taylor R S, Leopold K E, Brimacombe R K. Long optical pulse excimer lasers for fiber optic delivery[J]. Proceedings of SPIE, 1041, 198-203(1989).

    [113] Zhao X H, Gao Y, Xu M J et al. Studies on nanosecond laser induced damage to fused fibers[J]. Acta Physica Sinica, 57, 5027-5034(2008).

    [114] Liu D S, Liang X, Lin Y et al. Simulink simulation guiding the experimental exploration of long pulse width of discharge excimer laser[J]. Infrared and Laser Engineering, 50, 20210022(2021).

    [115] Dijkkamp D, Venkatesan T, Wu X D et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material[J]. Applied Physics Letters, 51, 619-621(1987).

    [116] Zhao Y, Zhang Z W, Zhu J M et al. Progress of second generation high temperature superconductors for practical applications[J]. Advanced Technology of Electrical Engineering and Energy, 36, 69-75(2017).

    [117] Zhang H, Yang J, Liu H Z et al. Study of YBCO superconducting layer using pulse laser deposition for coated conductor[J]. Journal of Functional Materials, 41, 428-431(2010).

    [118] Liu Y S, Hu Z C, Li M et al. Application of LA-ICP-MS in element analysis of geological samples[J]. Chinese Science Bulletin, 58, 3753-3769(2013).

    [119] Alloncle G, Gilon N, Lienemann C P et al. A new method for quantitative analysis of metal content in heterogeneous catalysts: laser ablation-ICP-AES[J]. Comptes Rendus Chimie, 12, 637-646(2009).

    [120] Guillong M, Horn I, Günther D. A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd: YAG laser for laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 18, 1224-1230(2003).

    [121] Horn I, Guillong M, Günther D. Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles: implications for LA-ICP-MS[J]. Applied Surface Science, 182, 91-102(2001).

    Xu Liang, Qihui Shen, Jingzhen Shao, Ying Lin. Discharge-Pumped Excimer Laser Technologies and Applications[J]. Laser & Optoelectronics Progress, 2023, 60(19): 1900006
    Download Citation