Xu Liang, Qihui Shen, Jingzhen Shao, Ying Lin. Discharge-Pumped Excimer Laser Technologies and Applications[J]. Laser & Optoelectronics Progress, 2023, 60(19): 1900006

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 60, Issue 19, 1900006 (2023)
![Diagram of emission bandwidth and photon energy of excimer laser[4]](/richHtml/lop/2023/60/19/1900006/img_01.jpg)
Fig. 1. Diagram of emission bandwidth and photon energy of excimer laser[4]
![Layout of high power excimer laser target experiment platform[19]](/richHtml/lop/2023/60/19/1900006/img_02.jpg)
Fig. 2. Layout of high power excimer laser target experiment platform[19]

Fig. 3. A series of excimer laser products of Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences. (a) FBG 200 excimer laser; (b) PLD 20 excimer laser
![Typical excimer potential energy curves[20,34]](/Images/icon/loading.gif)
![Structure diagram of excimer laser excited by discharge [4]](/Images/icon/loading.gif)
Fig. 5. Structure diagram of excimer laser excited by discharge [4]

Fig. 6. CC energy transfer circuit based on thyratron

Fig. 7. Diagram of all solid state excitation circuit
![Gas discharge chamber indication[34]](/Images/icon/loading.gif)
Fig. 8. Gas discharge chamber indication[34]
![Different electric field cloud images of the same electrode structure[51]. (a) Compact Chang’s surface electrode; (b) compact Chang’s surface electrode with preionization plate](/Images/icon/loading.gif)
Fig. 9. Different electric field cloud images of the same electrode structure[51]. (a) Compact Chang’s surface electrode; (b) compact Chang’s surface electrode with preionization plate
![Commonly used preionization structure indication. (a) Corona preionization[55]; (b) bare spark pre-ionization[56]; (c) surface creepage preionization[57]](/Images/icon/loading.gif)
Fig. 10. Commonly used preionization structure indication. (a) Corona preionization[55]; (b) bare spark pre-ionization[56]; (c) surface creepage preionization[57]
![Flow field simulation in discharge chamber[60]. (a) Cloud map of velocity of gas inside chamber; (b) vector graph of gas flow velocity between electrodes](/Images/icon/loading.gif)
Fig. 11. Flow field simulation in discharge chamber[60]. (a) Cloud map of velocity of gas inside chamber; (b) vector graph of gas flow velocity between electrodes

Fig. 12. Typical excimer laser beam distribution
![Positively supported unstable cavity in standard mode[4]](/Images/icon/loading.gif)
Fig. 13. Positively supported unstable cavity in standard mode[4]
![TWINSCAN NXT: 2050i, ASML, Netherlands[75]](/Images/icon/loading.gif)
Fig. 14. TWINSCAN NXT: 2050i, ASML, Netherlands[75]
![Diagram of MOPA excimer laser system[76]](/Images/icon/loading.gif)
Fig. 15. Diagram of MOPA excimer laser system[76]
![Coherent's two-cavity synchronous combination technology scheme[93]](/Images/icon/loading.gif)
Fig. 16. Coherent's two-cavity synchronous combination technology scheme[93]
![Application of multi-cavity plate annealing[92]](/Images/icon/loading.gif)
Fig. 17. Application of multi-cavity plate annealing[92]
![A long pulse pump circuit[114]](/Images/icon/loading.gif)
Fig. 18. A long pulse pump circuit[114]
![Principle of PLD[5]](/Images/icon/loading.gif)
Fig. 19. Principle of PLD[5]

Fig. 20. LA-ICP-MS system structure diagram
|
Table 1. Excimer gas media and emission wavelength

Set citation alerts for the article
Please enter your email address