• Photonics Research
  • Vol. 10, Issue 1, 33 (2022)
Xiongliang Wei1、*, Syed Ahmed Al Muyeed1, Haotian Xue1, Elia Palmese1, Renbo Song1, Nelson Tansu2、3、4, and Jonathan J. Wierer1、5
Author Affiliations
  • 1Center for Photonics and Nanoelectronics, Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
  • 2School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
  • 3Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005, Australia
  • 4e-mail: nelson.tansu@adelaide.edu.au
  • 5e-mail: jjwierer@ncsu.edu
  • show less
    DOI: 10.1364/PRJ.441122 Cite this Article Set citation alerts
    Xiongliang Wei, Syed Ahmed Al Muyeed, Haotian Xue, Elia Palmese, Renbo Song, Nelson Tansu, Jonathan J. Wierer. Near-infrared electroluminescence of AlGaN capped InGaN quantum dots formed by controlled growth on photoelectrochemical etched quantum dot templates[J]. Photonics Research, 2022, 10(1): 33 Copy Citation Text show less
    References

    [1] Z. Liu, C.-H. Lin, B.-R. Hyun, C.-W. Sher, Z. Lv, B. Luo, F. Jiang, T. Wu, C.-H. Ho, H.-C. Kuo, J.-H. He. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl., 9, 91(2020).

    [2] H. Zhang, Q. Su, S. Chen. Recent progress in the device architecture of white quantum-dot light-emitting diodes. J. Inf. Disp., 20, 169-180(2019).

    [3] H. J. Jang, J. Y. Lee, J. Kim, J. Kwak, J. H. Park. Progress of display performances: AR, VR, QLED, and OLED. J. Inf. Disp., 21, 1-9(2020).

    [4] J. J. Wierer, N. Tansu, A. J. Fischer, J. Y. Tsao. III-nitride quantum dots for ultra-efficient solid-state lighting. Laser Photon. Rev., 10, 612-622(2016).

    [5] S. Fafard, K. Hinzer, C. N. Allen. Semiconductor quantum dot nanostructures and their roles in the future of photonics. Braz. J. Phys., 34, 550-554(2004).

    [6] B. Tongbram, H. Ghadi, S. Adhikary, A. Mandal, S. Chakrabarti. Cross-sectional TEM (XTEM) analysis for vertically coupled quaternary In0.21Al0.21Ga0.58As capped InAs/GaAs quantum dot infrared photodetectors. Proc. SPIE, 9373, 93730S(2015).

    [7] D. Yan, S. Zhao, Y. Zhang, H. Wang, Z. Zang, D. Yan, S. Zhao, Y. Zhang, H. Wang, Z. Zang. High efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr3 quantum dots. Opto-Electron. Adv., 4, 200075(2021).

    [8] D. Yan, T. Shi, Z. Zang, T. Zhou, Z. Liu, Z. Zhang, J. Du, Y. Leng, X. Tang. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small, 15, 1901173(2019).

    [9] Q. Mo, C. Chen, W. Cai, S. Zhao, D. Yan, Z. Zang. Room temperature synthesis of stable zirconia-coated CsPbBr3 nanocrystals for white light-emitting diodes and visible light communication. Laser Photon. Rev., 15, 2100278(2021).

    [10] S. K. Karunakaran, G. M. Arumugam, W. Yang, S. Ge, S. N. Khan, Y. Mai, X. Lin, G. Yang. Europium (II)-doped all-inorganic CsPbBr3 perovskite solar cells with carbon electrodes. Sol. RRL, 4, 2000390(2020).

    [11] D. G. Deppe, L. A. Graham, D. L. Huffaker. Enhanced spontaneous emission using quantum dots and an apertured microcavity. IEEE J. Quantum Electron., 35, 1502-1508(1999).

    [12] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe. 1.3 μm room-temperature GaAs-based quantum-dot laser. Appl. Phys. Lett., 73, 2564-2566(1998).

    [13] A. Stintz, G. T. Liu, H. Li, L. F. Lester, K. J. Malloy. Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure. IEEE Photon. Technol. Lett., 12, 591-593(2000).

    [14] J. M. Ferreyra, C. R. Proetto. Strong-confinement approach for impurities in quantum dots. Phys. Rev. B, 52, R2309-R2312(1995).

    [15] Y. Arakawa, H. Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett., 40, 939-941(1982).

    [16] I.-K. Park, M.-K. Kwon, C.-Y. Cho, J.-Y. Kim, C.-H. Cho, S.-J. Park. Effect of InGaN quantum dot size on the recombination process in light-emitting diodes. Appl. Phys. Lett., 92, 253105(2008).

    [17] C. H. Lu, Y. C. Li, Y. H. Chen, S. C. Tsai, Y. L. Lai, Y. L. Li, C. P. Liu. Output power enhancement of InGaN/GaN based green light-emitting diodes with high-density ultra-small In-rich quantum dots. J. Alloys Compd., 555, 250-254(2013).

    [18] W. Lv, L. Wang, J. Wang, Z. Hao, Y. Luo. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers. Nanoscale Res. Lett., 71, 617(2012).

    [19] T. Frost, A. Banerjee, K. Sun, S. L. Chuang, P. Bhattacharya. InGaN/GaN quantum dot red (λ = 630 nm) laser. IEEE J. Quantum Electron., 49, 923-931(2013).

    [20] Y. Mei, G.-E. Weng, B.-P. Zhang, J.-P. Liu, W. Hofmann, L.-Y. Ying, J.-Y. Zhang, Z.-C. Li, H. Yang, H.-C. Kuo. Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’. Light Sci. Appl., 61, e16199(2016).

    [21] B. Damilano, N. Grandjean, S. Vézian, J. Massies. InGaN heterostructures grown by molecular beam epitaxy: from growth mechanism to optical properties. J. Cryst. Growth, 227–228, 466-470(2001).

    [22] C. Bayram, M. Razeghi. Stranski–Krastanov growth of InGaN quantum dots emitting in green spectra. Appl. Phys. A, 96, 403-408(2009).

    [23] C. Adelmann, J. Simon, N. T. Pelekanos, Y. Samson, G. Feuillet, B. Daudin. Growth and optical characterization of InGaN quantum dots resulting from a 2D–3D transition. Phys. Status Solidi, 176, 639-642(1999).

    [24] B. Damilano, N. Grandjean, S. Dalmasso, J. Massies. Room-temperature blue-green emission from InGaN/GaN quantum dots made by strain-induced islanding growth. Appl. Phys. Lett., 75, 3751-3753(1999).

    [25] S. Figge, C. Tessarek, T. Aschenbrenner, D. Hommel. InGaN quantum dot growth in the limits of Stranski–Krastanov and spinodal decomposition. Phys. Status Solidi, 248, 1765-1776(2011).

    [26] F. Ivaldi, C. Meissner, J. Domagala, S. Kret, M. Pristovsek, M. Högele, M. Kneissl. Influence of a GaN cap layer on the morphology and the physical properties of embedded self-organized InN quantum dots on GaN(0001) grown by metal–organic vapour phase epitaxy. Jpn. J. Appl. Phys., 50, 031004(2011).

    [27] Q. Wang, T. Wang, J. Bai, A. G. Cullis, P. J. Parbrook, F. Ranalli. Influence of annealing temperature on optical properties of InGaN quantum dot based light emitting diodes. Appl. Phys. Lett., 93, 081915(2008).

    [28] S. Liu, J. Yang, D. Zhao, D. Jiang, J. Zhu, F. Liang, P. Chen, Z. Liu, Y. Xing, L. Peng, L. Zhang. Uniform-sized indium quantum dots grown on the surface of an InGaN epitaxial layer by a two-step cooling process. Nanoscale Res. Lett., 14, 280(2019).

    [29] A. Kadir, C. Meissner, T. Schwaner, M. Pristovsek, M. Kneissl. Growth mechanism of InGaN quantum dots during metalorganic vapor phase epitaxy. J. Cryst. Growth, 334, 40-45(2011).

    [30] L. Wang, L. Wang, C.-J. Chen, K.-C. Chen, Z. Hao, Y. Luo, C. Sun, M.-C. Wu, J. Yu, Y. Han, B. Xiong, J. Wang, H. Li. Green InGaN quantum dots breaking through efficiency and bandwidth bottlenecks of micro-LEDs. Laser Photon. Rev., 15, 2000406(2021).

    [31] G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, N. Tansu. Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography. Nanoscale Res. Lett., 61, 342(2011).

    [32] Y. K. Ee, H. Zhao, R. A. Arif, M. Jamil, N. Tansu. Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy. J. Cryst. Growth, 310, 2320-2325(2008).

    [33] X. Xiao, A. J. Fischer, G. T. Wang, P. Lu, D. D. Koleske, M. E. Coltrin, J. B. Wright, S. Liu, I. Brener, G. S. Subramania, J. Y. Tsao. Quantum-size-controlled photoelectrochemical fabrication of epitaxial InGaN quantum dots. Nano Lett., 14, 5616-5620(2014).

    [34] X. Xiao, A. J. Fischer, M. E. Coltrin, P. Lu, D. D. Koleske, G. T. Wang, R. Polsky, J. Y. Tsao. Photoelectrochemical etching of epitaxial InGaN thin films: self-limited kinetics and nanostructuring. Electrochim. Acta, 162, 163-168(2015).

    [35] X. Wei, S. A. Al Muyeed, M. R. Peart, W. Sun, N. Tansu, J. J. Wierer. Room temperature luminescence of passivated InGaN quantum dots formed by quantum-sized-controlled photoelectrochemical etching. Appl. Phys. Lett., 113, 121106(2018).

    [36] S. A. Al Muyeed, X. Wei, D. Borovac, R. Song, N. Tansu, J. J. Wierer. Controlled growth of InGaN quantum dots on photoelectrochemically etched InGaN quantum dot templates. J. Cryst. Growth, 540, 125652(2020).

    [37] S. A. Al Muyeed, W. Sun, X. Wei, R. Song, D. D. Koleske, N. Tansu, J. J. Wierer. Strain compensation in InGaN-based multiple quantum wells using AlGaN interlayers. AIP Adv., 7, 105312(2017).

    [38] C. B. Soh, W. Liu, S. J. Chua, R. J. N. Tan, S. S. Ang, S. Y. Chow. Red emitting LEDs formed by indium rich quantum dots incorporated in MQWs. Phys. Status Solidi, 208, 1579-1581(2011).

    [39] S. Saito, R. Hashimoto, J. Hwang, S. Nunoue. InGaN light-emitting diodes on c-face sapphire substrates in green gap spectral range. Appl. Phys. Express, 6, 111004(2013).

    [40] D. D. Koleske, A. J. Fischer, B. N. Bryant, P. G. Kotula, J. J. Wierer. On the increased efficiency in InGaN-based multiple quantum wells emitting at 530–590 nm with AlGaN interlayers. J. Cryst. Growth, 415, 57-64(2015).

    [41] S. L. Chuang, N. Holonyak. Efficient quantum well to quantum dot tunneling: analytical solutions. Appl. Phys. Lett., 80, 1270-1272(2002).

    [42] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys., 89, 5815-5875(2001).

    [43] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, L. F. Eastman. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter, 14, 3399-3434(2002).

    Xiongliang Wei, Syed Ahmed Al Muyeed, Haotian Xue, Elia Palmese, Renbo Song, Nelson Tansu, Jonathan J. Wierer. Near-infrared electroluminescence of AlGaN capped InGaN quantum dots formed by controlled growth on photoelectrochemical etched quantum dot templates[J]. Photonics Research, 2022, 10(1): 33
    Download Citation