• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0714005 (2023)
Yonggang Gu1, Jian Niu2, Jian Yang2, Fang Dong3、*, and Hongxing Xu1
Author Affiliations
  • 1School of Physics and Technology, Wuhan University, Wuhan 430072, Hubei , China
  • 2State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 3The Institute of Technological Sciences, Wuhan University, Wuhan 430072, Hubei , China
  • show less
    DOI: 10.3788/LOP230574 Cite this Article Set citation alerts
    Yonggang Gu, Jian Niu, Jian Yang, Fang Dong, Hongxing Xu. [J]. Laser & Optoelectronics Progress, 2023, 60(7): 0714005 Copy Citation Text show less
    References

    [1] Rais-Zadeh M, Gokhale V J, Ansari A et al. Gallium nitride as an electromechanical material[J]. Journal of Microelectromechanical Systems, 23, 1252-1271(2014).

    [2] Jayant Baliga B. Gallium nitride devices for power electronic applications[J]. Semiconductor Science and Technology, 28, 074011(2013).

    [3] Chen K J, Häberlen O, Lidow A et al. GaN-on-Si power technology: devices and applications[J]. IEEE Transactions on Electron Devices, 64, 779-795(2017).

    [4] Zhang B J, Liu Y. A review of GaN-based optoelectronic devices on silicon substrate[J]. Chinese Science Bulletin, 59, 1251-1275(2014).

    [5] Liao Y T, Thomidis C, Kao C K et al. AlGaN based deep ultraviolet light emitting diodes with high internal quantum efficiency grown by molecular beam epitaxy[J]. Applied Physics Letters, 98, 081110(2011).

    [6] Li D B, Jiang K, Sun X J et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 10, 43(2018).

    [7] Varghese A, Periasamy C, Bhargava L. Analytical modeling and simulation-based investigation of AlGaN/AlN/GaN bio-HEMT sensor for C-erbB-2 detection[J]. IEEE Sensors Journal, 18, 9595-9603(2018).

    [8] Cimalla I, Will F, Tonisch K et al. AlGaN/GaN biosensor: effect of device processing steps on the surface properties and biocompatibility[J]. Sensors and Actuators B: Chemical, 123, 740-748(2007).

    [9] Lee H H, Bae M, Jo S H et al. AlGaN/GaN high electron mobility transistor-based biosensor for the detection of C-reactive protein[J]. Sensors, 15, 18416-18426(2015).

    [10] Pearton S J, Ren F. Gallium nitride-based gas, chemical and biomedical sensors[J]. IEEE Instrumentation & Measurement Magazine, 15, 16-21(2012).

    [11] Wang W C, Wang H Y, Lin G R. Ultrahigh-speed violet laser diode based free-space optical communication beyond 25 Gbit/s[J]. Scientific Reports, 8, 1-7(2018).

    [12] Rajbhandari S, McKendry J J D, Herrnsdorf J et al. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications[J]. Semiconductor Science and Technology, 32, 023001(2017).

    [13] Chang T L, Chen Z C, Lee Y C. Micro/nano structures induced by femtosecond laser to enhance light extraction of GaN-based LEDs[J]. Optics Express, 20, 15997-16002(2012).

    [14] So H, Lim J, Senesky D G. Continuous V-grooved AlGaN/GaN surfaces for high-temperature ultraviolet photodetectors[J]. IEEE Sensors Journal, 16, 3633-3639(2016).

    [15] Yang C C, Horng R H, Lee C E et al. Improvement in extraction efficiency of GaN-based light-emitting diodes with textured surface layer by natural lithography[J]. Japanese Journal of Applied Physics, 44, 2525(2005).

    [16] Miyagawa R, Eryu O. Formation of femtosecond laser-induced periodic nanostructures on GaN[J]. Japanese Journal of Applied Physics, 58, SCCB01(2019).

    [17] Nayak B K, Gupta M C. Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation[J]. Optics and Lasers in Engineering, 48, 940-949(2010).

    [18] Boinovich L B, Emelyanenko A M, Modestov A D et al. Synergistic effect of superhydrophobicity and oxidized layers on corrosion resistance of aluminum alloy surface textured by nanosecond laser treatment[J]. ACS Applied Materials & Interfaces, 7, 19500-19508(2015).

    [19] Cunha A, Elie A M, Plawinski L et al. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation[J]. Applied Surface Science, 360, 485-493(2016).

    [20] Cheng J H, Hu L X, Wang T J et al. Research progress of femtosecond laser-induced multifilament generation and regulation[J/OL]. Chinese Journal of Lasers, 1-29. http://kns.cnki.net/kcms/detail/31.1339.tn.20221028.1028.048.html

    [21] Chen L, Wen G Q, Guo F et al. Fractal characteristics of microstructures on a superhydrophobic silicone rubber surface induced by a nanosecond laser[J]. Chinese Journal of Lasers, 48, 0602201(2021).

    [22] Wang T Y, Bian J T, Li X et al. Effect of laser induced periodic surface structures on infrared emission characteristics of copper films[J]. Chinese Journal of Lasers, 48, 0401017(2021).

    [23] Bonse J, Krüger J, Höhm S et al. Femtosecond laser-induced periodic surface structures[J]. Journal of Laser Applications, 24, 042006(2012).

    [24] van Driel H M, Sipe J E, Young J F. Laser-induced periodic surface structure on solids: a universal phenomenon[J]. Physical Review Letters, 49, 1955-1958(1982).

    [25] Vorobyev A Y, Guo C L. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals[J]. Applied Physics A, 86, 321-324(2007).

    [26] Vorobyev A Y, Guo C L. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals[J]. Journal of Applied Physics, 103, 043513(2008).

    [27] Höhm S, Herzlieb M, Rosenfeld A et al. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics[J]. Applied Surface Science, 374, 331-338(2016).

    [28] Chen L, Yang J, Jiang Q L et al. Regular periodic surface structures on indium tin oxide film efficiently fabricated by femtosecond laser direct writing with a cylindrical lens[J]. Materials, 15, 5092(2022).

    [29] Tsibidis G D, Stratakis E. Ionisation processes and laser induced periodic surface structures in dielectrics with mid-infrared femtosecond laser pulses[J]. Scientific Reports, 10, 1-13(2020).

    [30] Dufft D, Rosenfeld A, Das S K et al. Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO[J]. Journal of Applied Physics, 105, 034908(2009).

    [31] Rebollar E, Castillejo M, Ezquerra T A. Laser induced periodic surface structures on polymer films: from fundamentals to applications[J]. European Polymer Journal, 73, 162-174(2015).

    [32] Rebollar E, de Aldana J R V, Martín-Fabiani I et al. Assessment of femtosecond laser induced periodic surface structures on polymer films[J]. Physical Chemistry Chemical Physics: PCCP, 15, 11287-11298(2013).

    [33] Fang R R, Vorobyev A, Guo C L. Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals[J]. Light: Science & Applications, 6, e16256(2017).

    [34] Sipe J E, Young J F, Preston J S et al. Laser-induced periodic surface structure. I. Theory[J]. Physical Review B, 27, 1141-1154(1983).

    [35] Young J F, Preston J S, van Driel H M et al. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass[J]. Physical Review B, 27, 1155-1172(1983).

    [36] Zazo R, Solis J, Sanchez-Gil J A et al. Deep UV laser induced periodic surface structures on silicon formed by self-organization of nanoparticles[J]. Applied Surface Science, 520, 146307(2020).

    [37] Bonse J, Krüger J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon[J]. Journal of Applied Physics, 108, 034903(2010).

    [38] Albu C, Dinescu A, Filipescu M et al. Periodical structures induced by femtosecond laser on metals in air and liquid environments[J]. Applied Surface Science, 278, 347-351(2013).

    [39] Gregorčič P, Sedlaček M, Podgornik B et al. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations[J]. Applied Surface Science, 387, 698-706(2016).

    [40] Ruiz de la Cruz A, Lahoz R, Siegel J et al. High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser[J]. Optics Letters, 39, 2491-2494(2014).

    [41] Chen L, Yang J, Zhang F Z et al. Surface birefringence in FTO thin film fabricated by ultrafast laser[J]. Journal of Nonlinear Optical Physics & Materials, 2250030(2022).

    [42] Müller F A, Kunz C, Gräf S. Bio-inspired functional surfaces based on laser-induced periodic surface structures[J]. Materials, 9, 476(2016).

    Yonggang Gu, Jian Niu, Jian Yang, Fang Dong, Hongxing Xu. [J]. Laser & Optoelectronics Progress, 2023, 60(7): 0714005
    Download Citation