• Journal of Semiconductors
  • Vol. 41, Issue 11, 111406 (2020)
Bingjun Tang and Li Geng
Author Affiliations
  • School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    DOI: 10.1088/1674-4926/41/11/111406 Cite this Article
    Bingjun Tang, Li Geng. A survey of active quasi-circulators[J]. Journal of Semiconductors, 2020, 41(11): 111406 Copy Citation Text show less
    References

    [1] A Fathy, E Denlinger, D Kalokitis et al. Miniature circulators for microwave superconducting systems. Proceedings of 1995 IEEE MTT-S International Microwave Symposium, 195(1995).

    [2] E K N Yung, R S Chen, K Wu et al. Analysis and development of millimeter-wave waveguide-junction circulator with a ferrite sphere. IEEE Trans Microw Theory Tech, 46, 1721(1998).

    [3] A M Borjak, L E Davis. More compact ferrite circulator junctions with predicted performance. IEEE Trans Microw Theory Tech, 40, 2352(1992).

    [4] S W Y Mung, W S Chan. The challenge of active circulators: Design and optimization in future wireless communication. IEEE Microw Mag, 20, 55(2019).

    [5] S Hara, T Tokumitsu, M Aikawa. Novel unilateral circuits for MMIC circulators. IEEE Trans Microw Theory Tech, 38, 1399(1990).

    [6] S C Shin, J Y Huang, K Y Lin et al. A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 μm CMOS technology. IEEE Microw Wirel Compon Lett, 18, 797(2008).

    [7] H S Wu, C W Wang, C K C Tzuang. CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-band. IEEE Trans Microw Theory Tech, 58, 2084(2010).

    [8] C H Chang, Y T Lo, J F Kiang. A 30 GHz active quasi-circulator with current-reuse technique in 0.18 μm CMOS technology. IEEE Microw Wirel Compon Lett, 20, 693(2010).

    [9] S W Y Mung, W S Chan. Novel active quasi-circulator with phase compensation technique. IEEE Microw Wirel Compon Lett, 18, 800(2008).

    [10] A Gasmi, B Huyart, E Bergeault et al. Noise and power optimization of a MMIC quasi-circulator. IEEE Trans Microw Theory Tech, 45, 1572(1997).

    [11] Y Zheng, C E Saavedra. Active quasi-circulator MMIC using OTAs. IEEE Microw Wirel Compon Lett, 19, 218(2009).

    [12] C Kalialakis, M J Cryan, P S Hall et al. Analysis and design of integrated active circulator antennas. IEEE Trans Microw Theory Tech, 48, 1017(2000).

    [13] M Palomba, A Bentini, D Palombini et al. A novel hybrid active quasi-circulator for L-band applications. 2012 19th International Conference on Microwaves, Radar & Wireless Communications, 41(2012).

    [14] D J Huang, J L Kuo, H E Wang. A 24-GHz low power and high isolation active quasi-circulator. 2012 IEEE/MTT-S International Microwave Symposium Digest, 1(2012).

    [15] S H Hung, Y C Lee, C C Su et al. High-isolation millimeter-wave subharmonic monolithic mixer with modified quasi-circulator. IEEE Trans Microw Theory Tech, 61, 1140(2013).

    [16] S Wang, C H Lee, Y B Wu. Fully integrated 10-GHz active circulator and quasi-circulator using bridged-T networks in standard CMOS. IEEE Trans VLSI Syst, 24, 3184(2016).

    [17] D Ghosh, G Kumar. A broadband active quasi circulator for UHF and L band applications. IEEE Microw Wirel Compon Lett, 26, 601(2016).

    [18] S W Y Mung, W S Chan. Self-equalization technique for distributed quasi-circulator. Microw Opt Technol Lett, 51, 182(2009).

    [19] S H Hung, K W Cheng, Y H Wang. An ultra wideband quasi-circulator with distributed amplifiers using 90 nm CMOS technology. IEEE Microw Wirel Compon Lett, 23, 656(2013).

    [20] J Y Hsieh, T Wang, S S Lu. A 1.5-mW, 2.4 GHz quasi-circulator with high transmitter-to-receiver isolation in CMOS technology. IEEE Microw Wirel Compon Lett, 24, 872(2014).

    [21] B J Tang, J T Xu, L Geng. Integrated active quasi-circulator with 27 dB isolation and 0.8–6.8GHz wideband by using feedback technique. 2018 IEEE MTT-S International Wireless Symposium (IWS), 1(2018).

    [22] K Fang, J F Buckwalter. A tunable 5–7 GHz distributed active quasi-circulator with 18-dBm output power in CMOS SOI. IEEE Microw Wirel Compon Lett, 27, 998(2017).

    [23] S W Y Mung, W S Chan. Wideband active quasi-circulator with tunable isolation enhancement. J Eng, 2014, 83(2014).

    [24] B J Tang, X Y Gui, J T Xu et al. A dual interference-canceling active quasi-circulator achieving 36-dB isolation over 6-GHz bandwidth. IEEE Microw Wirel Compon Lett, 29, 409(2019).

    [25] B J Tang, X Y Gui, J T Xu et al. A wideband active quasi-circulator with 34-dB isolation and insertion loss of 2.5 dB. IEEE Microw Wirel Compon Lett, 30, 693(2020).

    [26]

    [27] N Reiskarimian, J Zhou, H Krishnaswamy. A CMOS passive LPTV nonmagnetic circulator and its application in a full-duplex receiver. IEEE J Solid-State Circuits, 52, 1358(2017).

    [28]

    [29] S Jain, A Agrawal, M Johnson et al. A 0.55-to-0.9 GHz 2.7 dB NF full-duplex hybrid-coupler circulator with 56 MHz 40 dB TX SI suppression. 2018 IEEE International Solid-State Circuits Conference - (ISSCC), 400(2018).

    [30]

    [31]

    [32] J Zhou, T H Chuang, T Dinc et al. Receiver with > 20MHz bandwidth self-interference cancellation suitable for FDD, co-existence and full-duplex applications. 2015 IEEE International Solid-State Circuits Conference (ISSCC), 1(2015).

    [33] N Reiskarimian, J Zhou, T H Chuang et al. Analysis and design of two-port N-path bandpass filters with embedded phase shifting. IEEE Trans Circuits Syst II, 63, 728(2016).

    [34] B van Liempd, B Hershberg, K Raczkowski et al. 2.2 A +70dBm IIP3 single-ended electrical-balance duplexer in 0.18 μm SOI CMOS. 2015 IEEE International Solid-State Circuits Conference (ISSCC), 1(2015).

    [35] D Yang, H Yuksel, A Molnar. A wideband highly integrated and widely tunable transceiver for in-band full-duplex communication. IEEE J Solid-State Circuits, 50, 1189(2015).

    [36] A Nagulu, T J Chen, G Zussman et al. Non-magnetic 0.18 μm SOI circulator with multi-watt power handling based on switched-capacitor clock boosting. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 444(2020).

    [37] S He, N Akel, C E Saavedra. Active quasi-circulator with high port-to-port isolation and small area. Electron Lett, 48, 848(2012).

    [38]

    [39]

    Bingjun Tang, Li Geng. A survey of active quasi-circulators[J]. Journal of Semiconductors, 2020, 41(11): 111406
    Download Citation