• Laser & Optoelectronics Progress
  • Vol. 58, Issue 3, 3230011 (2021)
Teng Da1, Zhao Yongzhe1, Wang Yuncheng1, Li Yiqiang1, and Wang Kai2
Author Affiliations
  • 1College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou , Henan 450044, China
  • 2Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    DOI: 10.3788/LOP202158.0323001 Cite this Article Set citation alerts
    Teng Da, Zhao Yongzhe, Wang Yuncheng, Li Yiqiang, Wang Kai. Graphene Plasmonic Waveguide Based on Silicon-on-Insulator Structure[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3230011 Copy Citation Text show less
    References

    [1] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 4, 83-91(2010).

    [2] Fang Y R, Sun M T. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Science & Applications, 4(2015).

    [3] Alam M Z, Meier J, Aitchison J S et al. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 18, 12971-12979(2010).

    [4] Yang L, Duan Z Y, Ma L H et al. Surface plasmon polariton nanolasers. Laser & Optoelectronics Progress, 56, 202409(2019).

    [5] Cao Q, Lalanne P. Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Physical Review Letters, 88, 057403(2002).

    [6] Lv H, Liu Y, Yu Z et al. Hybrid plasmonic waveguides for low-threshold nanolaser applications. Chinese Optics Letters, 12, 112401(2014).

    [7] Zhang G M, Sun H L, Li J M et al. Study on the transmission characteristics of symmetric hybrid long-range surface plasmon polariton waveguide. Laser & Optoelectronics Progress, 50, 121301(2013).

    [8] Oulton R F, Sorger V J, Bartal G et al. A hybrid plasmonic waveguide for sub-wavelength confinement and long range propagation. Nature Photonics, 2, 496-500(2008).

    [9] Teng D, Cao Q, Wang K. An extension of the generalized nonlocal theory for the mode analysis of plasmonic waveguides at telecommunication frequency. Journal of Optics, 19, 055003(2017).

    [10] Guo X, Ma Y G, Wang Y P et al. Nanowire plasmonic waveguides, circuits and devices. Laser & Photonics Reviews, 7, 855-881(2013).

    [11] Zhang N, Fu T, Xu H X et al. Reduced loss of plasmon propagation in a Ag nanowire on Si substrate. Nano Energy, 68, 104322(2020).

    [12] Dai Y Y, Zhu X L, Mortensen N A et al. Nanofocusing in a tapered graphene plasmonic waveguide. Journal of Optics, 17, 065002(2015).

    [13] Geim A K. Graphene: status and prospects. Science, 324, 1530-1534(2009).

    [14] Yang X X, Kong X T, Dai Q. Optical properties of graphene plasmons and their potential applications. Acta Physica Sinica, 64, 106801(2015).

    [15] Vakil A, Engheta N. Transformation optics using graphene. Science, 332, 1291-1294(2011).

    [16] He X Y, Gao P Q, Shi W Z. A further comparison of graphene and thin metal layers for plasmonics. Nanoscale, 8, 10388-10397(2016).

    [17] Li Z Q, Feng D D, Li X et al. Graphene surface plasmon polaritons based photoelectric modulator with double branched structure. Acta Optica Sinica, 38, 0124001(2018).

    [18] Du W, Li K, Wu D et al. Electrically controllable directional coupler based on tunable hybrid graphene nanoplasmonic waveguide. Optics Communications, 430, 450-455(2019).

    [19] Kim J T, Choi S Y. Graphene-based plasmonic waveguides for photonic integrated circuits. Optics Express, 19, 24557-24562(2011).

    [20] Liu J P, Zhai X, Wang L L et al. Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide. Plasmonics, 11, 703-711(2016).

    [21] Li Y, Zhang H F, Fan T X et al. Theoretical analysis of double dielectric loaded graphene surface plasmon polariton. Acta Optica Sinica, 36, 0724001(2016).

    [22] Li Y, Zhang H F, Wu Q et al. Theoretical analysis of single dielectric loaded two-sheet graphene symmetric surface plasmon waveguide. Laser & Optoelectronics Progress, 56, 202413(2019).

    [23] Ye L F, Sui K H, Liu Y H et al. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation. Optics Express, 26, 15935-15947(2018).

    [24] Wu D, Tian J P, Yang R C. Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate. Journal of Nonlinear Optical Physics & Materials, 27, 1850013(2018).

    [25] Gao Y X, Ren G B, Zhu B F et al. Analytical model for plasmon modes in graphene-coated nanowire. Optics Express, 22, 24322-24331(2014).

    [26] Teng D, Wang K, Li Z et al. Graphene gap plasmonic waveguide for deep-subwavelength transmission of mid-infrared waves. Acta Optica Sinica, 40, 0623002(2020).

    [27] Huang Y X, Zhang L, Yin H et al. Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1  mm propagation. Optics Letters, 42, 2078-2081(2017).

    [28] Teng D, Wang K, Li Z et al. Graphene-coated elliptical nanowires for low loss subwavelength terahertz transmission. Applied Sciences, 9, 2351(2019).

    [29] Chen B, Meng C, Yang Z et al. Graphene coated ZnO nanowire optical waveguides. Optics Express, 22, 24276-24285(2014).

    [30] Zhai L, Xue W R, Yang R C et al. Propagation properties of nano dielectric parallel lines coated with graphene. Acta Optica Sinica, 35, 1123002(2015).

    [31] Peng Y L, Xue W R, Wei Z Z et al. Mode properties analysis of graphene-coated asymmetric parallel dielectric nanowire waveguides. Acta Physica Sinica, 67, 038102(2018).

    [32] Wei Z Z, Xue W R, Peng Y L et al. Mode characteristics of waveguides based on three graphene-coated dielectric nanowires. Acta Optica Sinica, 39, 0124001(2019).

    [33] Teng D, Wang K, Huan Q S et al. High-performance light transmission based on graphene plasmonic waveguides. Journal of Materials Chemistry C, 8, 6832-6838(2020).

    [34] Teng D, Wang K, Li Z et al. Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range. Optics Express, 27, 12458-12469(2019).

    [35] Zhu B F, Ren G B, Yang Y et al. Field enhancement and gradient force in the graphene-coated nanowire pairs. Plasmonics, 10, 839-845(2015).

    [36] Teng D, Wang K, Huan Q S et al. High-performance transmission of surface plasmons in graphene-covered nanowire pairs with substrate. Nanomaterials, 9, 1594(2019).

    [37] Hajati M, Hajati Y. High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate. Journal of the Optical Society of America B, 33, 2560-2565(2016).

    [38] Hajati M, Monfared Y E. Modal properties of a cylindrical graphene-coated nanowire deposited on a hexagonal boron nitride substrate. Applied Optics, 58, 6666-6671(2019).

    [39] Liang H W, Zhang L, Zhang S et al. Gate-programmable electro-optical addressing array of graphene-coated nanowires with sub-10 nm resolution. ACS Photonics, 3, 1847-1853(2016).

    [40] Chandler-Horowitz D, Amirtharaj P M. High-accuracy, midinfrared (450 cm-1⩽ ω⩽ 4000 cm-1) refractive index values of silicon. Journal of Applied Physics, 97, 123526(2005).

    [41] Flöry N, Ma P, Salamin Y et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nature Nanotechnology, 15, 118-124(2020).

    [42] Dong Y H, Yang Q, Du G Q et al. Electronic manipulation of near-field nanofocusing in few-layer graphene-based hybrid nanotips. Chinese Optics Letters, 17, 072501(2019).

    [43] Zhou Y, Zhu Y Y, Zhang K et al. Plasmonic band structures in doped graphene tubes. Optics Express, 25, 12081-12089(2017).

    [44] Teng D, Cao Q, Li S et al. Tapered dual elliptical plasmon waveguides as highly efficient terahertz connectors between approximate plate waveguides and two-wire waveguides. Journal of the Optical Society of America A, 31, 268-273(2014).

    [45] Buckley R, Berini P. Figures of merit for 2D surface plasmon waveguides and application to metal stripes. Optics Express, 15, 12174-12182(2007).

    [46] Efetov D K, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Physical Review Letters, 105, 256805(2010).

    [47] Ma J, Zeng D, Yang Y et al. A review of crosstalk research for plasmonic waveguides. Opto-Electronic Advances, 2, 180022(2019).

    Teng Da, Zhao Yongzhe, Wang Yuncheng, Li Yiqiang, Wang Kai. Graphene Plasmonic Waveguide Based on Silicon-on-Insulator Structure[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3230011
    Download Citation