• Photonics Research
  • Vol. 8, Issue 12, 1818 (2020)
Jiaji Li1、2, Alex Matlock3, Yunzhe Li3, Qian Chen1, Lei Tian3、4, and Chao Zuo1、2、*
Author Affiliations
  • 1School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • 2Smart Computational Imaging Laboratory (SCILab), Nanjing University of Science and Technology, Nanjing 210094, China
  • 3Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
  • 4e-mail: leitian@bu.edu
  • show less
    DOI: 10.1364/PRJ.403873 Cite this Article Set citation alerts
    Jiaji Li, Alex Matlock, Yunzhe Li, Qian Chen, Lei Tian, Chao Zuo. Resolution-enhanced intensity diffraction tomography in high numerical aperture label-free microscopy[J]. Photonics Research, 2020, 8(12): 1818 Copy Citation Text show less
    References

    [1] Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 105, 13730-13735(2008).

    [2] S. Lee, K. Kim, A. Mubarok, A. Panduwirawan, K. Lee, S. Lee, H. Park, Y. Park. High-resolution 3-D refractive index tomography and 2-D synthetic aperture imaging of live phytoplankton. J. Opt. Soc. Korea, 18, 691-697(2014).

    [3] Y. Park, C. Depeursinge, G. Popescu. Quantitative phase imaging in biomedicine. Nat. Photonics, 12, 578-589(2018).

    [4] R. M. Zucker. Whole insect and mammalian embryo imaging with confocal microscopy: morphology and apoptosis. Cytometry Part A, 69, 1143-1152(2006).

    [5] W. R. Zipfel, R. M. Williams, W. W. Webb. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol., 21, 1369-1377(2003).

    [6] S. Wäldchen, J. Lehmann, T. Klein, S. Van De Linde, M. Sauer. Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep., 5, 15348(2015).

    [7] D. J. Stephens, V. J. Allan. Light microscopy techniques for live cell imaging. Science, 300, 82-86(2003).

    [8] P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, G. Pierattini. Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction. Opt. Lett., 31, 1405-1407(2006).

    [9] B. Kemper, G. Von Bally. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt., 47, A52-A61(2008).

    [10] Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, G. Popescu. Spatial light interference microscopy (SLIM). Opt. Express, 19, 1016-1026(2011).

    [11] Y. Baek, K. Lee, S. Shin, Y. Park. Kramers-Kronig holographic imaging for high-space-bandwidth product. Optica, 6, 45-51(2019).

    [12] L. Waller, L. Tian, G. Barbastathis. Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Opt. Express, 18, 12552-12561(2010).

    [13] L. Tian, L. Waller. Quantitative differential phase contrast imaging in an LED array microscope. Opt. Express, 23, 11394-11403(2015).

    [14] J. A. Rodrigo, T. Alieva. Rapid quantitative phase imaging for partially coherent light microscopy. Opt. Express, 22, 13472-13483(2014).

    [15] Y. Bao, T. K. Gaylord. Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function. J. Opt. Soc. Am. A, 33, 2125-2136(2016).

    [16] C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, Q. Chen. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci. Rep., 7, 7654(2017).

    [17] J. Li, Q. Chen, J. Zhang, Y. Zhang, L. Lu, C. Zuo. Efficient quantitative phase microscopy using programmable annular led illumination. Biomed. Opt. Express, 8, 4687-4705(2017).

    [18] C. Zuo, J. Li, J. Sun, Y. Fan, J. Zhang, L. Lu, R. Zhang, B. Wang, L. Huang, Q. Chen. Transport of intensity equation: a tutorial. Opt. Lasers Eng., 106187(2020).

    [19] V. Lauer. New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope. J. Microsc., 205, 165-176(2002).

    [20] W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld. Tomographic phase microscopy. Nat. Methods, 4, 717-719(2007).

    [21] A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, A. Vollmer. Tomographic phase microscopy of living three-dimensional cell cultures. J. Biomed. Opt., 19, 046009(2014).

    [22] Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld. Optical diffraction tomography for high resolution live cell imaging. Opt. Express, 17, 266-277(2009).

    [23] Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge. Marker-free phase nanoscopy. Nat. Photonics, 7, 113-117(2013).

    [24] K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, Y. Park. Optical diffraction tomography techniques for the study of cell pathophysiology. J. Biomed. Photonics Eng., 2, 2994(2016).

    [25] T. Kim, R. Zhou, M. Mir, S. Babacan, P. Carney, L. Goddard, G. Popescu. White-light diffraction tomography of unlabelled live cells. Nat. Photonics, 8, 256-263(2014).

    [26] Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, Y. Park. Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells. Opt. Express, 22, 10398-10407(2014).

    [27] K. Kim, Z. Yaqoob, K. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. So, Y. Park. Diffraction optical tomography using a quantitative phase imaging unit. Opt. Lett., 39, 6935-6938(2014).

    [28] J. A. Rodrigo, J. M. Soto, T. Alieva. Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells. Biomed. Opt. Express, 8, 5507-5517(2017).

    [29] J. M. Soto, J. A. Rodrigo, T. Alieva. Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy. Appl. Opt., 57, A205-A214(2018).

    [30] J. Li, Q. Chen, J. Sun, J. Zhang, J. Ding, C. Zuo. Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations. Biomed. Opt. Express, 9, 2526-2542(2018).

    [31] J. M. Soto, J. A. Rodrigo, T. Alieva. Partially coherent illumination engineering for enhanced refractive index tomography. Opt. Lett., 43, 4699-4702(2018).

    [32] S. B. Mehta, C. J. Sheppard. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast. Opt. Lett., 34, 1924-1926(2009).

    [33] M. Chen, L. Tian, L. Waller. 3D differential phase contrast microscopy. Biomed. Opt. Express, 7, 3940-3950(2016).

    [34] M. H. Jenkins, T. K. Gaylord. Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy. Appl. Opt., 54, 9213-9227(2015).

    [35] T. H. Nguyen, M. E. Kandel, M. Rubessa, M. B. Wheeler, G. Popescu. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun., 8, 210(2017).

    [36] L. Tian, J. Wang, L. Waller. 3D differential phase-contrast microscopy with computational illumination using an LED array. Opt. Lett., 39, 1326-1329(2014).

    [37] L. Tian, L. Waller. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica, 2, 104-111(2015).

    [38] R. Horstmeyer, J. Chung, X. Ou, G. Zheng, C. Yang. Diffraction tomography with Fourier ptychography. Optica, 3, 827-835(2016).

    [39] R. Ling, W. Tahir, H.-Y. Lin, H. Lee, L. Tian. High-throughput intensity diffraction tomography with a computational microscope. Biomed. Opt. Express, 9, 2130-2141(2018).

    [40] J. Li, A. Matlock, Y. Li, Q. Chen, C. Zuo, L. Tian. High-speed in vitro intensity diffraction tomography. Adv. Photonics, 1, 066004(2019).

    [41] A. Matlock, L. Tian. High-throughput, volumetric quantitative phase imaging with multiplexed intensity diffraction tomography. Biomed. Opt. Express, 10, 6432-6448(2019).

    [42] C. Zuo, J. Sun, J. Li, A. Asundi, Q. Chen. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Opt. Lasers Eng., 128, 106003(2020).

    [43] S. Chowdhury, M. Chen, R. Eckert, D. Ren, F. Wu, N. Repina, L. Waller. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica, 6, 1211-1219(2019).

    [44] M. Chen, D. Ren, H.-Y. Liu, S. Chowdhury, L. Waller. Multi-layer born multiple-scattering model for 3D phase microscopy. Optica, 7, 394-403(2020).

    [45] C. Sheppard, M. Gu, Y. Kawata, S. Kawata. Three-dimensional transfer functions for high-aperture systems. J. Opt. Soc. Am. A, 11, 593-598(1994).

    [46] Y. Sung, C. J. Sheppard. Three-dimensional imaging by partially coherent light under nonparaxial condition. J. Opt. Soc. Am. A, 28, 554-559(2011).

    [47] M. Gu. Advanced Optical Imaging Theory, 75(2000).

    [48] X. Ou, R. Horstmeyer, G. Zheng, C. Yang. High numerical aperture Fourier ptychography: principle, implementation and characterization. Opt. Express, 23, 3472-3491(2015).

    [49] R. Eckert, Z. F. Phillips, L. Waller. Efficient illumination angle self-calibration in Fourier ptychography. Appl. Opt., 57, 5434-5442(2018).

    [50] R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, C. Yang. Standardizing the resolution claims for coherent microscopy. Nat. Photonics, 10, 68-71(2016).

    [51] C. Huet, C. Sahuquillo-Merino, E. Coudrier, D. Louvard. Absorptive and mucus-secreting subclones isolated from a multipotent intestinal cell line (ht-29) provide new models for cell polarity and terminal differentiation. J. Cell Biol., 105, 345-357(1987).

    [52] X. Dai, J. Liu, Y. Nian, M.-H. Qiu, Y. Luo, J. Zhang. A novel cycloartane triterpenoid from Cimicifuga induces apoptotic and autophagic cell death in human colon cancer HT-29 cells. Oncol. Rep., 37, 2079-2086(2017).

    [53] U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, D. Psaltis. Learning approach to optical tomography. Optica, 2, 517-522(2015).

    [54] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).

    [55] Y. Xue, S. Cheng, Y. Li, L. Tian. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica, 6, 618-629(2019).

    [56] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 6, 921-943(2019).

    [57] Y. Rivenson, Y. Zhang, H. Günaydn, D. Teng, A. Ozcan. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light: Sci. Appl., 7, 17141(2018).

    [58] S. Feng, Q. Chen, G. Gu, T. Tao, L. Zhang, Y. Hu, W. Yin, C. Zuo. Fringe pattern analysis using deep learning. Adv. Photonics, 1, 025001(2019).

    Jiaji Li, Alex Matlock, Yunzhe Li, Qian Chen, Lei Tian, Chao Zuo. Resolution-enhanced intensity diffraction tomography in high numerical aperture label-free microscopy[J]. Photonics Research, 2020, 8(12): 1818
    Download Citation