• Journal of Semiconductors
  • Vol. 43, Issue 10, 103101 (2022)
Faraz Kaiser Malik* and Kristel Fobelets*
Author Affiliations
  • epartment of Electrical and Electronic Engineering, Imperial College London, SW7 2BT, nited Kingdom
  • show less
    DOI: 10.1088/1674-4926/43/10/103101 Cite this Article
    Faraz Kaiser Malik, Kristel Fobelets. A review of thermal rectification in solid-state devices[J]. Journal of Semiconductors, 2022, 43(10): 103101 Copy Citation Text show less
    References

    [1] S E Thompson, S Parthasarathy. Moore's law: The future of Si microelectronics. Mater Today, 9, 20(2006).

    [2] J M P Cardoso, J G F Coutinho, P C Diniz. High-performance embedded computing. In: Embedded Computing for High Performance, Amsterdam: Elsevier, 17(2017).

    [3] E Pop. Energy dissipation and transport in nanoscale devices. Nano Res, 3, 147(2010).

    [4] F K Malik, T Talha, F Ahmed. A parametric study of the effects of critical design parameters on the performance of nanoscale silicon devices. Nanomaterials, 10, 1987(2020).

    [5] D Vasileska, K Raleva, S M Goodnick. Modeling heating effects in nanoscale devices: The present and the future. J Comput Electron, 7, 66(2008).

    [6] J Choi, M Jeong. Compact, lightweight, and highly efficient circular heat sink design for high-end PCs. Appl Therm Eng, 92, 162(2016).

    [7] S M Sohel Murshed, C A Nieto de Castro. A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew Sustain Energy Rev, 78, 821(2017).

    [8] N A Roberts, D G Walker. A review of thermal rectification observations and models in solid materials. Int J Therm Sci, 50, 648(2011).

    [9] M Y Wong, C Y Tso, T C Ho et al. A review of state of the art thermal diodes and their potential applications. Int J Heat Mass Transf, 164, 120607(2021).

    [10] C L Chiu, C H Wu, B W Huang et al. Detecting thermal rectification. AIP Adv, 6, 121901(2016).

    [11] D Chakraborty, J Brooke, N C S Hulse et al. Thermal rectification optimization in nanoporous Si using Monte Carlo simulations. J Appl Phys, 126, 184303(2019).

    [12] A P Thompson, H M Aktulga, R Berger et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun, 271, 108171(2022).

    [13] L Medrano Sandonas, G Cuba-Supanta, R Gutierrez et al. Enhancement of thermal transport properties of asymmetric graphene/hBN nanoribbon heterojunctions by substrate engineering. Carbon, 124, 642(2017).

    [14] G Wehmeyer, T Yabuki, C Monachon et al. Thermal diodes, regulators, and switches: Physical mechanisms and potential applications. Appl Phys Rev, 4, 041304(2017).

    [15] C Starr. The copper oxide rectifier. Physics, 7, 15(1936).

    [16] X K Chen, Z X Xie, Y Zhang et al. Highly efficient thermal rectification in carbon/boron nitride heteronanotubes. Carbon, 148, 532(2019).

    [17] S Li, Z X Guo, J W Ding. Interface thermal transport of graphene-based intralayer heterostructures. Phys B, 561, 164(2019).

    [18] F Giazotto, F S Bergeret. Thermal rectification of electrons in hybrid normal metal-superconductor nanojunctions. Appl Phys Lett, 103, 242602(2013).

    [19] H D Wang, S Q Hu, K Takahashi et al. Experimental study of thermal rectification in suspended monolayer graphene. Nat Commun, 8, 15843(2017).

    [20] J H Bahk, Z X Bian, A Shakouri. Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials. Phys Rev B, 87, 075204(2013).

    [21] M A Sierra, D Sánchez. Strongly nonlinear thermovoltage and heat dissipation in interacting quantum dots. Phys Rev B, 90, 115313(2014).

    [22] Huberman . Electronic Kapitza conductance at a diamond-Pb interface. Phys Rev B, 50, 2865(1994).

    [23] A V Sergeev. Electronic Kapitza conductance due to inelastic electron-boundary scattering. Phys Rev B, 58, R10199(1998).

    [24] A Majumdar, P Reddy. Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces. Appl Phys Lett, 84, 4768(2004).

    [25] Walker D. Thermal rectification mechanisms including noncontinuum effects. Proc Jt ASME ISHMT Heat Transf, 2006

    [26] G D Mahan. Thermionic refrigeration. J Appl Phys, 76, 4362(1994).

    [27] G F C Rogers. Heat transfer at the interface of dissimilar metals. Int J Heat Mass Transf, 2, 150(1961).

    [28] J S Moon, R N Keeler. A theoretical consideration of directional effects in heat flow at the interface of dissimilar metals. Int J Heat Mass Transf, 5, 967(1962).

    [29] J Crossno, J K Shi, K Wang et al. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. Science, 351, 1058(2016).

    [30] M J Martínez-Pérez, F Giazotto. Efficient phase-tunable Josephson thermal rectifier. Appl Phys Lett, 102, 182602(2013).

    [31] M J Martínez-Pérez, A Fornieri, F Giazotto. Rectification of electronic heat current by a hybrid thermal diode. Nat Nanotechnol, 10, 303(2015).

    [32] D Breunig, S B Zhang, B Trauzettel et al. Directional electron filtering at a superconductor-semiconductor interface. Phys Rev B, 103, 165414(2021).

    [33] A A M Staring, L W Molenkamp, B W Alphenaar et al. Coulomb-blockade oscillations in the thermopower of a quantum dot. Europhys Lett, 22, 57(1993).

    [34] R Scheibner, M König, D Reuter et al. Quantum dot as thermal rectifier. New J Phys, 10, 083016(2008).

    [35] D M T Kuo, Y C Chang. Thermoelectric and thermal rectification properties of quantum dot junctions. Phys Rev B, 81, 205321(2010).

    [36] Y C Zhang, S H Su. Thermal rectification and negative differential thermal conductance based on a parallel-coupled double quantum-dot. Physica A, 584, 126347(2021).

    [37] M Peyrard. The design of a thermal rectifier. Europhys Lett, 76, 49(2006).

    [38] M Terraneo, M Peyrard, G Casati. Controlling the energy flow in nonlinear lattices: A model for a thermal rectifier. Phys Rev Lett, 88, 094302(2002).

    [39] B W Li, J H Lan, L Wang. Interface thermal resistance between dissimilar anharmonic lattices. Phys Rev Lett, 95, 104302(2005).

    [40] M Hu, P Keblinski, B W Li. Thermal rectification at silicon-amorphous polyethylene interface. Appl Phys Lett, 92, 211908(2008).

    [41] W Kobayashi, Y Teraoka, I Terasaki. An oxide thermal rectifier. Appl Phys Lett, 95, 171905(2009).

    [42] A Arora, T Hori, T Shiga et al. Thermal rectification in restructured graphene with locally modulated temperature dependence of thermal conductivity. Phys Rev B, 96, 165419(2017).

    [43] A L Cottrill, M S Strano. Analysis of thermal diodes enabled by junctions of phase change materials. Adv Energy Mater, 5, 1500921(2015).

    [44] C Dames. Solid-state thermal rectification with existing bulk materials. J Heat Transf, 131, 1(2009).

    [45] J Ordonez-Miranda, J M Hill, K Joulain et al. Conductive thermal diode based on the thermal hysteresis of VO2 and nitinol. J Appl Phys, 123, 085102(2018).

    [46] E Pallecchi, Z Chen, G E Fernandes et al. A thermal diode and novel implementation in a phase-change material. Mater Horiz, 2, 125(2015).

    [47] A L Cottrill, S Wang, A T Liu et al. Dual phase change thermal diodes for enhanced rectification ratios: Theory and experiment. Adv Energy Mater, 8, 1702692(2018).

    [48] K Hirata, T Matsunaga, S Singh et al. High-performance solid-state thermal diode consisting of Ag2(S, Se, Te). J Electron Mater, 49, 2895(2020).

    [49] S O Kasali, J Ordonez-Miranda, K Joulain. Conductive thermal diode based on two phase-change materials. Int J Therm Sci, 153, 106393(2020).

    [50] A Chaves, J G Azadani, H Alsalman et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater Appl, 4, 29(2020).

    [51] X K Chen, M Pang, T Chen et al. Thermal rectification in asymmetric graphene/hexagonal boron nitride van der waals heterostructures. ACS Appl Mater Interfaces, 12, 15517(2020).

    [52] O Farzadian, A Razeghiyadaki, C Spitas et al. Phonon thermal rectification in hybrid graphene-C3N: A molecular dynamics simulation. Nanotechnology, 31, 485401(2020).

    [53] H Wang, F C Liu, W Fu et al. Two-dimensional heterostructures: Fabrication, characterization, and application. Nanoscale, 6, 12250(2014).

    [54] B Liu, J A Baimova, C D Reddy et al. Interface thermal conductance and rectification in hybrid graphene/silicene monolayer. Carbon, 79, 236(2014).

    [55] A Rajabpour, S Bazrafshan, S Volz. Carbon-nitride 2D nanostructures: Thermal conductivity and interfacial thermal conductance with the silica substrate. Phys Chem Chem Phys, 21, 2507(2019).

    [56] W R Zhong, W H Huang, X R Deng et al. Thermal rectification in thickness-asymmetric graphene nanoribbons. Appl Phys Lett, 99, 193104(2011).

    [57] F Yousefi, F Khoeini, A Rajabpour. Thermal rectification and interfacial thermal resistance in hybrid pillared-graphene and graphene: A molecular dynamics and continuum approach. Nanotechnology, 31, 285707(2020).

    [58] H Y Cao, H J Xiang, X G Gong. Unexpected large thermal rectification in asymmetric grain boundary of graphene. Solid State Commun, 152, 1807(2012).

    [59] M Yamada, Y Yamakita, K Ohno. Phonon dispersions of hydrogenated and dehydrogenated carbon nanoribbons. Phys Rev B, 77, 054302(2008).

    [60] T Yamamoto, K Watanabe, K Mii. Empirical-potential study of phonon transport in graphitic ribbons. Phys Rev B, 70, 245402(2004).

    [61] A K Vallabhaneni, B Qiu, J N Hu et al. Interfacial thermal conductance limit and thermal rectification across vertical carbon nanotube/graphene nanoribbon-silicon interfaces. J Appl Phys, 113, 064311(2013).

    [62] T Li, Z N Tang, Z X Huang et al. Interfacial thermal resistance of 2D and 1D carbon/hexagonal boron nitride van der Waals heterostructures. Carbon, 105, 566(2016).

    [63] S H Lee, M S Choi, J Lee et al. High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure. Appl Phys Lett, 104, 053103(2014).

    [64] C C Chen, Z Li, L Shi et al. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res, 8, 666(2015).

    [65] E Kim, T H Yu, E S Song et al. Chemical vapor deposition-assembled graphene field-effect transistor on hexagonal boron nitride. Appl Phys Lett, 98, 262103(2011).

    [66] K Bui, H Nguyen, C Cousin et al. Thermal behavior of double-walled carbon nanotubes and evidence of thermal rectification. J Phys Chem C, 116, 4449(2012).

    [67] C W Chang, D Okawa, A Majumdar et al. Solid-state thermal rectifier. Science, 314, 1121(2006).

    [68] P Desmarchelier, A Tanguy, K Termentzidis. Thermal rectification in asymmetric two-phase nanowires. Phys Rev B, 103, 014202(2021).

    [69] N Yang, G Zhang, B W Li. Thermal rectification in asymmetric graphene ribbons. Appl Phys Lett, 95, 033107(2009).

    [70] J N Hu, X L Ruan, Y P Chen. Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study. Nano Lett, 9, 2730(2009).

    [71] Y Wang, A Vallabhaneni, J N Hu et al. Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Lett, 14, 592(2014).

    [72] L Medrano Sandonas, R Gutierrez, A Dianat et al. Engineering thermal rectification in MoS2 nanoribbons: A non-equilibrium molecular dynamics study. RSC Adv, 5, 54345(2015).

    [73] X Yang, X H Zheng, Q S Liu et al. Experimental study on thermal conductivity and rectification in suspended monolayer MoS2. ACS Appl Mater Interfaces, 12, 28306(2020).

    [74] C L Han, Z Q Chen, B W Li. Thermal rectification in three dimensional graphite nanocones. Int J Heat Mass Transf, 179, 121675(2021).

    [75] J Miller, W Jang, C Dames. Thermal rectification by ballistic phonons in asymmetric nanostructures. Proceedings of ASME 2009 Heat Transfer Summer Conference, 317(2010).

    [76] H Hayashi, Y Ito, K Takahashi. Thermal rectification of asymmetrically-defective materials. J Mech Sci Technol, 25, 27(2011).

    [77] B W Li, L Wang, G Casati. Thermal diode: Rectification of heat flux. Phys Rev Lett, 93, 184301(2004).

    [78] A Yousefzadi Nobakht, Y Ashraf Gandomi, J Q Wang et al. Thermal rectification via asymmetric structural defects in graphene. Carbon, 132, 565(2018).

    [79] S Q Hu, J Chen, N Yang et al. Thermal transport in graphene with defect and doping: Phonon modes analysis. Carbon, 116, 139(2017).

    [80] F Yousefi, F Khoeini, A Rajabpour. Thermal conductivity and thermal rectification of nanoporous graphene: A molecular dynamics simulation. Int J Heat Mass Transf, 146, 118884(2020).

    [81] W W Zhao, Y L Wang, Z T Wu et al. Defect-engineered heat transport in graphene: A route to high efficient thermal rectification. Sci Rep, 5, 11962(2015).

    [82] M Kasprzak, M Sledzinska, K Zaleski et al. High-temperature silicon thermal diode and switch. Nano Energy, 78, 105261(2020).

    Faraz Kaiser Malik, Kristel Fobelets. A review of thermal rectification in solid-state devices[J]. Journal of Semiconductors, 2022, 43(10): 103101
    Download Citation