• Photonics Research
  • Vol. 12, Issue 1, 33 (2024)
Zhuoyi Wang1, Xingyuan Lu1、5、*, Jianbo Gao1, Xuechun Zhao1, Qiwen Zhan2, Yangjian Cai3、4、6、*, and Chengliang Zhao1、7、*
Author Affiliations
  • 1School of Physical Science and Technology, Soochow University, Suzhou 215006, China
  • 2School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 3Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
  • 4Shandong Joint Research Center of Light Manipulation Science and Photonics Integrated Chip of East China Normal University and Shandong Normal University, East China Normal University, Shanghai 200241, China
  • 5e-mail: xylu@suda.edu.cn
  • 6e-mail: yangjian_cai@163.com
  • 7e-mail: zhaochengliang@suda.edu.cn
  • show less
    DOI: 10.1364/PRJ.499520 Cite this Article Set citation alerts
    Zhuoyi Wang, Xingyuan Lu, Jianbo Gao, Xuechun Zhao, Qiwen Zhan, Yangjian Cai, Chengliang Zhao. Coherence phase spectrum analyzer for a randomly fluctuated fractional vortex beam[J]. Photonics Research, 2024, 12(1): 33 Copy Citation Text show less
    References

    [1] L. Allen, M. Beijersbergen, R. Spreeuw. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] M. Berry. Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A, 6, 259-268(2004).

    [3] J. Chen, C. Wan, Q. Zhan. Engineering photonic angular momentum with structured light: a review. Adv. Photon., 3, 064001(2021).

    [4] X. Fang, H. Yang, W. Yao. High-dimensional orbital angular momentum multiplexing nonlinear holography. Adv. Photon., 3, 015001(2021).

    [5] H. Zhang, J. Zeng, X. Lu. Review on fractional vortex beam. Nanophotonics, 11, 241-273(2022).

    [6] J. Wang, J. Yang, I. Fazal. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [7] M. Erhard, R. Fickler, M. Krenn. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl., 7, 17146(2018).

    [8] W. Zhang, L. Wang, S. Zhao. Capacity performance of the underwater system based fractional orbital angular momentum. IEEE International Conference on Communications Workshops, 1-4(2019).

    [9] J. Wang. Advances in communications using optical vortices. Photon. Res., 4, B14-B28(2016).

    [10] A. Mair, A. Vaziri, G. Weihs. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [11] S. Oemrawsingh, X. Ma, D. Voigt. Experimental demonstration of fractional orbital angular momentum entanglement of two photons. Phys. Rev. Lett., 95, 240501(2005).

    [12] G. Tkachenko, M. Chen, K. Dholakia. Is it possible to create a perfect fractional vortex beam?. Optica, 4, 330-333(2017).

    [13] G. Gbur. Fractional vortex Hilbert’s hotel. Optica, 3, 222-225(2016).

    [14] D. Deng, M. Lin, Y. Li. Precision measurement of fractional orbital angular momentum. Phys. Rev. Appl., 12, 014048(2019).

    [15] J. Leach, M. Padgett, S. Barnett. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett., 88, 257901(2002).

    [16] J. Zhu, P. Zhang, D. Fu. Probing the fractional topological charge of a vortex light beam by using dynamic angular double slits. Photon. Res., 4, 187-190(2016).

    [17] H. Wang, Z. Zhan, F. Hu. Intelligent optoelectronic processor for orbital angular momentum spectrum measurement. PhotoniX, 4, 9(2023).

    [18] K. Saitoh, Y. Hasegawa, K. Hirakawa. Measuring the orbital angular momentum of electron vortex beams using a forked grating. Phys. Rev. Lett., 111, 074801(2013).

    [19] Z. Liu, S. Yan, H. Liu. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Phys. Rev. Lett., 123, 183902(2019).

    [20] G. Jing, L. Chen, P. Wang. Recognizing fractional orbital angular momentum using feed forward neural network. Results Phys., 28, 104619(2021).

    [21] G. Berkhout, M. Lavery, J. Courtial. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 105, 153601(2010).

    [22] M. Mirhosseini, M. Malik, Z. Shi. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun., 4, 2781(2013).

    [23] P. Thibault, A. Menzel. Reconstructing state mixtures from diffraction measurements. Nature, 494, 68-71(2013).

    [24] B. Stoklasa, L. Motka, J. Rehacek. Wavefront sensing reveals optical coherence. Nat. Commun., 5, 3275(2014).

    [25] G. Gbur, E. Wolf. Spreading of partially coherent beams in random media. J. Opt. Soc. Am. A, 19, 1592-1598(2002).

    [26] T. Shirai, A. Dogariu, E. Wolf. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence. J. Opt. Soc. Am. A, 20, 1094-1102(2003).

    [27] J. Yu, X. Zhu, F. Wang. Experimental study of reducing beam wander by modulating the coherence structure of structured light beams. Opt. Lett., 44, 4371-4374(2019).

    [28] S. Lin, C. Wang, X. Zhu. Propagation of radially polarized Hermite non-uniformly correlated beams in a turbulent atmosphere. Opt. Express, 28, 27238-27249(2020).

    [29] R. Lin, H. Yu, X. Zhu. The evolution of spectral intensity and orbital angular momentum of twisted Hermite Gaussian Schell model beams in turbulence. Opt. Express, 28, 7152-7164(2020).

    [30] D. Peng, Z. Huang, Y. Liu. Optical coherence encryption with structured random light. PhotoniX, 2, 6(2021).

    [31] J. Zhu, H. Zhang, Z. Wang. Coherence singularity and evolution of partially coherent Bessel–Gaussian vortex beams. Opt. Express, 31, 9308-9318(2023).

    [32] Z. Yang, O. Magaña-Loaiza, M. Mirhosseini. Digital spiral object identification using random light. Light Sci. Appl., 6, e17013(2017).

    [33] L. Chen, J. Lei, J. Romero. Quantum digital spiral imaging. Light Sci. Appl., 3, e153(2014).

    [34] K. Huang, H. Liu, S. Restuccia. Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum. Light Sci. Appl., 7, 17156(2018).

    [35] L. Mandel, E. Wolf. Optical Coherence and Quantum Optics(1995).

    [36] Y. Chen, F. Wang, Y. Cai. Partially coherent light beam shaping via complex spatial coherence structure engineering. Adv. Phys., 7, 2009742(2022).

    [37] X. Lu, Z. Wang, C. Zhao. Four-dimensional experimental characterization of partially coherent light using incoherent modal decomposition. Nanophotonics, 12, 3463-3470(2023).

    [38] A. Rana, J. Zhang, M. Pham. Potential of attosecond coherent diffractive imaging. Phys. Rev. Lett., 125, 086101(2020).

    [39] I. Nape, K. Singh, A. Klug. Revealing the invariance of vectorial structured light in complex media. Nat. Photonics, 16, 538-546(2022).

    [40] A. Klug, C. Peters, A. Forbes. Robust structured light in atmospheric turbulence. Adv. Photon., 5, 016006(2023).

    [41] Y. Liu, Y. Chen, F. Wang. Robust far-field imaging by spatial coherence engineering. Opto-Electron. Adv., 4, 210027(2021).

    Zhuoyi Wang, Xingyuan Lu, Jianbo Gao, Xuechun Zhao, Qiwen Zhan, Yangjian Cai, Chengliang Zhao. Coherence phase spectrum analyzer for a randomly fluctuated fractional vortex beam[J]. Photonics Research, 2024, 12(1): 33
    Download Citation