• Journal of Semiconductors
  • Vol. 40, Issue 12, 122701 (2019)
Guanlin Chen1、2、3, Can Han1、2、3, Lingling Yan1、2、3, Yuelong Li1、2、3, Ying Zhao1、2、3, and Xiaodan Zhang1、2、3
Author Affiliations
  • 1Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300071, China
  • 2Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300071, China
  • 3Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
  • show less
    DOI: 10.1088/1674-4926/40/12/122701 Cite this Article
    Guanlin Chen, Can Han, Lingling Yan, Yuelong Li, Ying Zhao, Xiaodan Zhang. Simulation and application of external quantum efficiency of solar cells based on spectroscopy[J]. Journal of Semiconductors, 2019, 40(12): 122701 Copy Citation Text show less
    References

    [1] K Ding, T Kirchartz, B E Pieters et al. Characterization and simulation of a-Si:H/μc-Si:H tandem solar cells. Sol Energy Mater Sol Cells, 95, 3318(2011).

    [2] M Jošt, E Köhnen, A B Morales-Vilches et al. Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy Environ Sci, 11, 3511(2018).

    [3]

    [4] T Hara, T Maekawa, S Minoura et al. Quantitative assessment of optical gain and loss in submicron-textured CuIn1−xG axSe2 solar cells fabricated by three-stage coevaporation. Phys Rev Appl, 2, 034012(2014).

    [5] A Nakane, H Tampo, M Tamakoshi et al. Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis. J Appl Phys, 120, 064505(2016).

    [6] A Nakane, S Fujimoto, H Fujiwara. Fast determination of the current loss mechanisms in textured crystalline Si-based solar cells. J Appl Phys, 122, 203101(2017).

    [7] D E Aspnes, A Studna. A high precision scanning ellipsometer. Appl Opt, 14, 220(1975).

    [8] G Jakopic, W Papousek. Unified analytical inversion of reflectometric and ellipsometric data of absorbing media. Appl Opt, 39, 2727(2000).

    [9] M H Chiu, J Y Lee, D C Su. Complex refractive-index measurement based on Fresnel's equations and the uses of heterodyne interferometry. Appl Opt, 38, 4047(1999).

    [10] M H Chiu, J Y Lee, D C Su. Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry. Appl Opt, 36, 2936(1997).

    [11] Y Y Cheng, J C Wyant. Multiple-wavelength phase-shifting interferometry. Appl Opt, 24, 804(1985).

    [12] Y Y Cheng, J C Wyant. Two-wavelength phase shifting interferometry. Appl Opt, 23, 4539(1984).

    [13] G Leveque, Y Villachon-Renard. Determination of optical constants of thin film from reflectance spectra. Appl Opt, 29, 3207(1990).

    [14] J M Siqueiros, L E Regalado, R Machorro. Determination of (n, k) for absorbing thin films using reflectance measurements. Appl Opt, 27, 4260(1988).

    [15] M F Al-Kuhaili, E E Khawaja, S M Durrani. Determination of the optical constants (n and k) of inhomogeneous thin films with linear index profiles. Appl Opt, 45, 4591(2006).

    [16] J I Cisneros. Optical characterization of dielectric and semiconductor thin films by use of transmission data. Appl Opt, 37, 5262(1998).

    [17] C C Katsidis, D I Siapkas. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl Opt, 41, 3978(2002).

    [18]

    [19] M Taguchi, A Yano, S Tohoda et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J Photovolt, 4, 96(2014).

    [20]

    [21] M Nenkov, T Pencheva. Calculation of thin-film optical constants by transmittance-spectra fitting. J Opt Soc Am A, 15, 1852(1998).

    [22] D A Likhachev. Practical method for optical dispersion model selection and parameters variations in scatterometry analysis with variable n&k's. Thin Solid Films, 562, 90(2014).

    [23] Z C Holman, M Filipič, A Descoeudres et al. Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells. J Appl Phys, 113, 013107(2013).

    [24] Z C Holman, A Descoeudres, L Barraud et al. Current losses at the front of silicon heterojunction solar cells. IEEE J Photovolt, 2, 7(2012).

    [25] I Chambouleyron, S Ventura, E Birgin et al. Optical constants and thickness determination of very thin amorphous semiconductor films. J Appl Phys, 92, 3093(2002).

    [26] F Zhu, J Singh. Study of the optical properties of amorphous silicon solar cells using admittance analysis. J Non-Cryst Solids, 152, 75(1993).

    [27] C W Lin, K P Chen, M C Su et al. Admittance loci design method for multilayer surface plasmon resonance devices. Sens Actuators B, 117, 219(2006).

    [28] M Theuring, S Geissendörfer, M Vehse et al. Thin metal layer as transparent electrode in n–i–p amorphous silicon solar cells. EPJ Photovolt, 5, 55205(2014).

    [29] G Y Margulis, B E Hardin, I K Ding et al. Parasitic absorption and internal quantum efficiency measurements of solid-state dye sensitized solar cells. Adv Energy Mater, 3, 959(2013).

    [30] D Zhang, I A Digdaya, R Santbergen et al. Design and fabrication of a SiOx/ITO double-layer anti-reflective coating for heterojunction silicon solar cells. Sol Energy Mater Sol Cells, 117, 132(2013).

    [31] C Ghica, L C Nistor, V S Teodorescu et al. Laser treatment of plasma-hydrogenated silicon wafers for thin layer exfoliation. J Appl Phys, 109, 063518(2011).

    [32] H Wang, X Liu, Z M Zhang. Absorption coefficients of crystalline silicon at wavelengths from 500 nm to 1000 nm. Int J Thermophys, 34, 213(2013).

    [33]

    [34] K M McPeak, S V Jayanti, S J Kress et al. Plasmonic films can easily be better: rules and recipes. ACS Photonics, 2, 326(2015).

    [35] J P Seif, A Descoeudres, M Filipič et al. Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells. J Appl Phys, 115, 024502(2014).

    [36] J Sritharathikhun, H Yamamoto, S Miyajima et al. Optimization of amorphous silicon oxide buffer layer for high-efficiency p-type hydrogenated microcrystalline silicon oxide/n-type crystalline silicon heterojunction solar cells. J Appl Phys, 47, 8452(2008).

    [37] H Fujiwara, T Kaneko, M Kondo. Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells. Appl Phys Lett, 91, 133508(2007).

    [38] C Battaglia, S M De Nicolas, S De Wolf et al. Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl Phys Lett, 104, 113902(2014).

    [39] X Zhang, Y Zhao, Y Gao et al. Influence of front electrode and back reflector electrode on the performances of microcrystalline silicon solar cells. J Non-Cryst Solids, 352, 1863(2006).

    [40] Z C Holman, A Descoeudres, S D Wolf et al. Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors. IEEE J Photovolt, 3, 1243(2013).

    [41] K S B D Silva, V J Keast, A Gentle et al. Optical properties and oxidation of α-phase Ag–Al thin films. Nanotechnology, 28, 095202(2017).

    [42] N Matsuki, H Fujiwara. Nondestructive characterization of textured a-Si:H/c-Si heterojunction solar cell structures with nanometer-scale a-Si:H and In2O3:Sn layers by spectroscopic ellipsometry. J Appl Phys, 114, 18(2013).

    [43] K Watanabe, N Matsuki, H Fujiwara. Ellipsometry Characterization of hydrogenated amorphous silicon layers formed on textured crystalline silicon substrates. Appl Phys Express, 3, 116604(2010).

    Guanlin Chen, Can Han, Lingling Yan, Yuelong Li, Ying Zhao, Xiaodan Zhang. Simulation and application of external quantum efficiency of solar cells based on spectroscopy[J]. Journal of Semiconductors, 2019, 40(12): 122701
    Download Citation