• Journal of Semiconductors
  • Vol. 40, Issue 12, 122701 (2019)
Guanlin Chen1、2、3, Can Han1、2、3, Lingling Yan1、2、3, Yuelong Li1、2、3, Ying Zhao1、2、3, and Xiaodan Zhang1、2、3
Author Affiliations
  • 1Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300071, China
  • 2Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300071, China
  • 3Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
  • show less
    DOI: 10.1088/1674-4926/40/12/122701 Cite this Article
    Guanlin Chen, Can Han, Lingling Yan, Yuelong Li, Ying Zhao, Xiaodan Zhang. Simulation and application of external quantum efficiency of solar cells based on spectroscopy[J]. Journal of Semiconductors, 2019, 40(12): 122701 Copy Citation Text show less

    Abstract

    In this study, a method for optical simulation of external quantum efficiency (EQE) spectra of solar cells based on spectroscopy is proposed, which is based on the tested transmittance and reflectance spectra. First, to obtain a more accurate information of refractive index and extinction coefficient values, we modified the reported optical constants from the measured reflectance and transmittance spectra. The obtained optical constants of each layer were then collected to simulate the EQE spectra of the device. This method provides a simple, accurate and versatile way to obtain the actual optical constants of different layers. The EQE simulation approach was applied to the flat and textured heterojunctions with intrinsic layers (HIT) solar cells, respectively, which showed a perfect matching between the calculation results and the experimental data. Furthermore, the specific optical losses in different devices were analyzed.
    $n(\lambda ) = {a_{\rm{n}}} + \frac{{{b_{\rm{n}}}}}{\lambda } + \frac{{{c_{\rm{n}}}}}{{{\lambda ^2}}} + \cdots ,$(1)

    View in Article

    $k(\lambda ) = {a_{\rm{k}}} + \frac{{{b_{\rm{k}}}}}{\lambda } + \frac{{{c_{\rm{k}}}}}{{{\lambda ^2}}} + \cdots .$(2)

    View in Article

    $\Delta n(\lambda ) = \Delta {a_{\rm{n}}} + \frac{{\Delta {b_{\rm{n}}}}}{\lambda } + \frac{{\Delta {c_{\rm{n}}}}}{{{\lambda ^2}}} + \cdots ,$(3)

    View in Article

    $\Delta k(\lambda ) = \Delta {a_{\rm{k}}} + \frac{{\Delta {b_{\rm{k}}}}}{\lambda } + \frac{{\Delta {c_{\rm{k}}}}}{{{\lambda ^2}}} + \cdots ,$(4)

    View in Article

    $\Delta F = {\left( {\sum\limits_\lambda {{{({R_{\rm{calculated}}} - {R_{\rm{measured}}})}^2} + } {{({T_{\rm{calculated}}} - {T_{\rm{measured}}})}^2}} \right)^{\frac{1}{2}}},$(5)

    View in Article

    $\eta = H/E,$(6)

    View in Article

    $\left[ {\begin{array}{*{20}{c}} {\rm{B}}\\ C \end{array}} \right] = \left\{ {\prod\limits_{j = 1}^m {\left[ {\begin{array}{*{20}{c}} {\cos {\delta _j}} & {\dfrac{i}{{{\eta _j}}}\sin {\delta _j}}\\ {i{\eta _j}\sin {\delta _j}} & {\cos {\delta _j}} \end{array}} \right]} } \right\}\left[ {\begin{array}{*{20}{c}} 1\\ {{\eta _s}} \end{array}} \right].$(7)

    View in Article

    $R = \frac{{\left| {{n_0} - {{\left. {{Y_{\rm{eff}}}} \right|}^2}} \right.}}{{\left| {{n_0} + {{\left. {{Y_{\rm{eff}}}} \right|}^2}} \right.}},$(8)

    View in Article

    $T = (1 - R)\frac{{{\rm{Re}}({N_s})}}{{{\rm{Re}}(BC^*)}}.$(9)

    View in Article

    ${\delta _{{j}}}(p) = \frac{2{\text{π}}{N_{{j}}}{d_{{j}}}}{\lambda} + \frac{p}{t}{\text{π}},$(10)

    View in Article

    ${R_{\rm{CPA}}} = \frac{1}{t}\sum\limits_{p = 0}^{t - 1} {\frac{{{{\left| {{n_0} - \left. {{Y_{\rm{eff}}}({\delta _{{j}}}(p))} \right|} \right.}^2}}}{{{{\left| {{n_0} + \left. {{Y_{\rm{eff}}}({\delta _{{j}}}(p))} \right|} \right.}^2}}}} .$(11)

    View in Article

    ${T_{\rm{CPA}}} = (1 - {R_{\rm{CPA}}})\frac{1}{t}\sum\limits_{p = 0}^{t - 1} {\frac{{{\rm{Re}}({N_s})}}{{{\rm{Re}}(BC^*({\delta _{{j}}}(p)))}}} ,$(12)

    View in Article

    $A = (1 - {R_{\rm{CPA}}})\left(1 - \frac{1}{t}\sum\limits_{p = 0}^{t - 1} {\frac{{{\rm{Re}}({N_s})}}{{{\rm{Re}}(BC^*({\delta _{\rm{j}}}(p)))}}}\right).$(13)

    View in Article

    ${\rm{EQE}} = 1-R-A_{\rm{p}}^{{\rm{front}}}-A_{\rm{p}}^{{\rm{back}}},$ (14)

    View in Article

    ${A_{\rm{tex}}} = (1 - {R_{\rm{EPS}}})\left(1 - \frac{1}{t}\sum\limits_{p = 0}^{t - 1} {\frac{{{\rm{Re}}({N_s})}}{{{\rm{Re}}(BC^*({\delta _{\rm{j}}}(p)))}}}\right).$(15)

    View in Article

    Guanlin Chen, Can Han, Lingling Yan, Yuelong Li, Ying Zhao, Xiaodan Zhang. Simulation and application of external quantum efficiency of solar cells based on spectroscopy[J]. Journal of Semiconductors, 2019, 40(12): 122701
    Download Citation