• Journal of Inorganic Materials
  • Vol. 35, Issue 7, 781 (2020)
Ping WANG, Xinyu LI, Zhanling SHI, and Haitao LI
Author Affiliations
  • School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.15541/jim20190460 Cite this Article
    Ping WANG, Xinyu LI, Zhanling SHI, Haitao LI. Synergistic Effect of Ag and Ag2O on Photocatalytic H2-evolution Performance of TiO2[J]. Journal of Inorganic Materials, 2020, 35(7): 781 Copy Citation Text show less
    References

    [1] H DU, Y LIU, C SHENG et al. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production. Chinese Journal of Catalysis, 38, 1295-1306(2017).

    [2] K ZHANG, H PARK J. Surface localization of defects in black TiO2: enhancing photoactivity or reactivity. Journal of Physical Chemistry C, 8, 199-207(2017).

    [3] Q LIU, J SHEN, X YU et al. Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)- codoped and exfoliated ultrathin g-C3N4 nanosheets. Applied Catalysis B: Environmental, 248, 84-94(2019).

    [4] L TIAN, X YANG, Q LIU et al. Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution. Applied Surface Science, 455, 403-409(2018).

    [5] Y MA, Q LI. Preparation and characterization of TiO2/Co3O4 nanocomposites and their photocatalytic activity for hydrogen evolution. Journal of Inorganic Materials, 31, 841-844(2016).

    [6] Y JIANG, F QUA, L TIAN et al. Self-assembled g-C3N4 nanoarchitectures with boosted photocatalytic solar-to-hydrogen efficiency. Applied Surface Science, 487, 59-67(2019).

    [7] J WEI, X LI, H WANG et al. Nitrogen doped carbon quantum dots/titanium dioxide composites for hydrogen evolution under sunlight. Journal of Inorganic Materials, 30, 925-930(2015).

    [8] C YAN, X XUE, W ZHANG et al. Well-designed Te/SnS2/Ag artificial nanoleaves for enabling and enhancing visible-light driven overall splitting of pure water. Nano Energy, 39, 539-545(2017).

    [9] W LIU, J SHEN, Q LIU et al. Porous MoP network structure as co-catalyst for H2 evolution over g-C3N4 nanosheets. Applied Surface Science, 462, 822-830(2018).

    [10] H TANG, R WANG, C ZHAO et al. Oxamide-modified g-C3N4 nanostructures: tailoring surface topography for high-performance visible light photocatalysis. Chemical Engineering Journal, 374, 1064-1075(2019).

    [11] C LI, H JIN, Z YANG et al. Preparation and photocatalytic properties of mesoporous RGO/TiO2 composites. Journal of Inorganic Materials, 32, 357-364(2017).

    [12] P WANG, Y LU, X WANG et al. Co-modification of amorphous-Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst for enhanced photocatalytic H2-production performance of TiO2. Applied Surface Science, 391, 259-266(2017).

    [13] W ZHANG, H ZHANG, J XU et al. 3D flower-like heterostructured TiO2@Ni(OH)2 microspheres for solar photocatalytic hydrogen production. Chinese Journal of Catalysis, 40, 320-325(2019).

    [14] V KUMARAVEL, S MATHEW, J BARTIETT et al. Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Applied Catalysis B: Environmental, 244, 1021-1064(2019).

    [15] D ZHAO, F YANG C. Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renewable and Sustainable Energy Reviews, 54, 1048-1059(2016).

    [16] F CHEN, W LUO, Y Mo et al. In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution. Applied Surface Science, 430, 448-456(2018).

    [17] B GUPTA, A MELVIN A, T MATTHEWS et al. TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production. Renewable and Sustainable Energy Reviews, 58, 1366-1375(2016).

    [18] L HOU, M ZHANG, Z GUAN et al. Effect of platinum dispersion on photocatalytic performance of Pt-TiO2. Journal of Nanoparticle Research, 20, 1-8(2018).

    [19] R SARAVANAN, D MANOJ, J QIN et al. Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production. Process Safety and Environmental Protection, 120, 339-347(2018).

    [20] P WANG, Y SHENG, F WANG et al. Synergistic effect of electron-transfer mediator and interfacial catalytic active-site for the enhanced H2 evolution performance: a case study of CdS/Au photocatalyst. Applied Catalysis B: Environmentai, 220, 561-569(2018).

    [21] H YU, W LIU, X WANG et al. Promoting the interfacial H2-evolution reaction of metallic Ag by Ag2S cocatalyst: a case study of TiO2/Ag-Ag2S photocatalyst. Applied Catalysis B: Environmental, 225, 415-423(2018).

    [22] X WANG, D LIAO, H YU et al. Highly efficient BiVO4 single-crystal photocatalyst with selective Ag2O-Ag modification: orientation transport, rapid interfacial transfer and catalytic reaction. Dalton Transactions, 47, 6370-6377(2018).

    [23] H YU, R LIU, X WANG et al. Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst. Applied Catalysis B: Environmental, 111-112, 326-333(2012).

    [24] J LI, H HAO, J ZHOU et al. Ag@AgCl QDs decorated g-C3N4 nanoplates: the photoinduced charge transfer behavior under visible light and full arc irradiation. Applied Surface Science, 422, 626-637(2017).

    [25] J KIM, H JUN, S HONG et al. Charge transfer in iron photoanode modified with carbon nanotubes for photoelectrochemical water oxidation: an electrochemical impendence study. International Journal of Hydrogen Energy, 36, 9462-9468(2011).

    [26] Y LIU, S DING, Y SHI et al. Construction of CdS/CoOx core-shell nanorods for efficient photocatalytic H2 evolution. Applied Catalysis B: Environmental, 234, 106-116(2018).

    Ping WANG, Xinyu LI, Zhanling SHI, Haitao LI. Synergistic Effect of Ag and Ag2O on Photocatalytic H2-evolution Performance of TiO2[J]. Journal of Inorganic Materials, 2020, 35(7): 781
    Download Citation