• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2021400 (2022)
Jia-Xiang GUO1、2, Run-Zhang XIE1、***, Peng WANG1、**, Tao ZHANG1、2, Kun ZHANG1, Hai-Lu WANG1, Ting HE1, Qing LI1, Fang WANG1, Xiao-Shuang CHEN1, Wei LU1, and Wei-Da HU1、2、*
Author Affiliations
  • 1State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.002 Cite this Article
    Jia-Xiang GUO, Run-Zhang XIE, Peng WANG, Tao ZHANG, Kun ZHANG, Hai-Lu WANG, Ting HE, Qing LI, Fang WANG, Xiao-Shuang CHEN, Wei LU, Wei-Da HU. Infrared photodetectors for multidimensional optical information acquisition[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021400 Copy Citation Text show less
    References

    [1] W.D. Hu, Q. Li, X.S. Chen et al. Recent progress on advanced infrared photodetectors. Acta Physica Sinica, 68, 42-76(2019).

    [2] M. Long, P. Wang, H. Fang et al. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Advanced Functional Materials, 29, 1803807(2018).

    [3] A. Rogalski. Next decade in infrared detectors(2017).

    [4] A. Rogalski, J. Antoszewski, L. Faraone. Third-generation infrared photodetector arrays. Journal of Applied Physics, 105, 091101(2009).

    [5] X. Ouyang, Y. Xu, M. Xian et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nature Photonics, 15, 901-907(2021).

    [6] S. Wen, Y. Liu, F. Wang et al. Nanorods with multidimensional optical information beyond the diffraction limit. Nat Commun, 11, 6047(2020).

    [7] T Lei, P Zhuiri, L Runfeng et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science, 373, 1353-1358(2021).

    [8] Y. Chen, Y. Wang, Z. Wang et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nature Electronics, 4, 357-363(2021).

    [9] W. Luo, Q. Weng, M. Long et al. Room-Temperature Single-Photon Detector Based on Single Nanowire. Nano Lett, 18, 5439-5445(2018).

    [10] L. Tong, X. Huang, P. Wang et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat Commun, 11, 2308(2020).

    [11] Z. Zhang, S. Wang, C. Liu et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat Nanotechnol(2021).

    [12] W. R. McCluney. Introduction to radiometry and photometry(1993).

    [13] B. F. Andresen, G. F. Fulop, C. M. Hanson et al. Advances in III-V based dual-band MWIR/LWIR FPAs at HRL(2017).

    [14] B. F. Andresen, Y. Reibel, G. F. Fulop et al. Infrared dual-band detectors for next generation(2011).

    [15] D. A. Huckridge, Y. Reibel, R. R. Ebert et al. MCT (HgCdTe) IR detectors: latest developments in France(2010).

    [16] Ji-Chuan XING, Guang-rong LIU, Wei-qi JIN et al. Dual waveband chromatic thermometry and its analysis. J. Infrared Technology, 24, 73-76(2002).

    [17] Zhong ZHEGN, La-mei HE. Infrared temperature measurement technology and its application to steel-making process. J. Industrial Heating, 34, 25-29(2005).

    [18] B. F. Andresen, D. F. King, G. F. Fulop et al. 3rdgeneration 1280 x 720 FPA development status at Raytheon Vision Systems(2006).

    [19] W. Hu, Z. Ye, L. Liao et al. 128 x 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Opt Lett, 39, 5184-5187(2014).

    [20] Zhen-hua YE, Rui-jun DING, Li HE et al. 128×128 SW/MW two-color HgCdTe IRFPAs. J. Infrared Millim.Waves, 29, 415-418(2012).

    [21] Zhen-hua YE, Li HE, Yang LI et al. Simultaneous mode MW/LW two color HgCdTe infrared detector. J. Infrared Millim.Waves, 31, 497-500(2012).

    [22] Y Chen, Z Ye, Z Peng et al. Processing window broadened by a barrier structure in dual-band HgCdTe IRFPAs, 59-60(2015).

    [23] Chun-zhang YANG, Gang QIN, Yan-hui LI et al. Research on growth of M/L-wavelength dual-band IR-MCT on CZT substrate by MBE. J. Infrared Technology, 40, 1-5(2018).

    [24] D 'Souza A I, M G Stapelbroek, E R Bryan et al. HgCdTe HDVIP detectors and FPAs for strategic applications. Proceedings of SPIE - The International Society for Optical Engineering, 5074, 146-156(2003).

    [25] B. Jeff, W. Milton, S. Richard et al. Gated IR imaging with 128 × 128 HgCdTe electron avalanche photodiode FPA(2007).

    [26] C. L. Jones, N. T. Gordon. Multi-color IRFPAs made from HgCdTe grown by MOVPE. Proceedings of SPIE, 6542, 654210-654210-654218(2007).

    [27] F. Aqariden, P. D. Dreiske, M. A. Kinch et al. Development of Molecular Beam Epitaxially Grown Hg1-xCdxTe for High-Density Vertically-Integrated Photodiode-Based Focal Plane Arrays. Journal of Electronic Materials, 36, 900-904(2007).

    [28] S. D. Gunapala, S. V. Bandara, J. K. Liu et al. 1024×1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane. Infrared Physics & Technology, 52, 395-398(2009).

    [29] S D Gunapala, S V Bandara, A Singh et al. 8-9 and 14-15 Micron Two-Color 640x486 GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array Camera. NTRS, 687-697(1999).

    [30] S. D. Gunapala, S. V. Bandara, K. L. John et al. 640 x 512 pixel long-wavelength infrared narrowband, multiband, and broadband QWIP focal plane arrays. IEEE Transactions on Electron Devices, 50, 2353-2360(2003).

    [31] A. Soibel, S. D. Gunapala, S. V. Bandara et al. Large format multicolor QWIP focal plane arrays(2009).

    [32] P. Wu, L. Ye, L. Tong et al. Van der Waals two-color infrared photodetector. Light: Science & Applications, 11, 6(2022).

    [33] X. Tang, M. M. Ackerman, M. Chen et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nature Photonics, 13, 277-282(2019).

    [34] Z. Yang, T. Albrow-Owen, H. Cui et al. Single-nanowire spectrometers. Science, 365, 1017-1020(2019).

    [35] Yongqiang Zhao, Ning Li, Peng Zhang et al. Infrared polarization perception and intelligent processing. Infrared and Laser Engineering, 47, 1102001(2018).

    [36] J S Tyo, D L Goldstein, D B Chenault et al. Review of passive imaging polarimetry for remote sensing applications. Appl Opt, 45, 5453-5469(2006).

    [37] B Ben-Dor, U P Oppenheim, L S Balfour. Polarization properties of targets and backgrounds in the infrared, 1971, 68-77(1993).

    [38] L B Wolff, A J Lundberg, R J Tang. Image understanding from thermal emission polarization, 625-631(1998).

    [39] Yong-qiang ZHAO, Wei-min MA, Lei-lei LI. Progress of infrared polarimetric imaging detection. J. Flight Control & Detetion, 2, 77-84(2019).

    [40] M. Strojnik, N. R. Malone, G. Paez et al. Staring MWIR, LWIR and 2-color and scanning LWIR polarimetry technology(2011).

    [41] A. Berurier, A. Nedelcu. Optimization of light polarization sensitivity in QWIP detectors. Infrared Physics & Technology, 59, 118-124(2013).

    [42] Xuchang Zhou, Dongsheng Li, Yingchun Mu et al. Study on 640×512 polarimetric LWIR QWIP FPA. Infrared and Laser Engineering, 46, 84-89(2017).

    [43] Y. Jing, Z. Li, Q. Li et al. Angular dependence of optical modes in metal-insulator-metal coupled quantum well infrared photodetector. AIP Advances, 6, 045205(2016).

    [44] Y. L. Jing, Z. F. Li, Q. Li et al. Pixel-level plasmonic microcavity infrared photodetector. Scientific Reports, 6, 25849(2016).

    [45] Q. Li, Z. Li, N. Li et al. High-Polarization-Discriminating Infrared Detection Using a Single Quantum Well Sandwiched in Plasmonic Micro-Cavity. Scientific Reports, 4, 6332(2014).

    [46] J. Wei, Y. Li, L. Wang et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nature Communications, 11, 6404(2020).

    [47] E. Panchenko, J. J. Cadusch, T. D. James et al. Plasmonic Metasurface-Enabled Differential Photodetectors for Broadband Optical Polarization Characterization. ACS Photonics, 3, 1833-1839(2016).

    [48] E. Zhang, P. Wang, Z. Li et al. Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe2 Nanosheets. ACS Nano, 10, 8067-8077(2016).

    [49] F. Xia, H. Wang, Y. Jia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 5, 4458(2014).

    [50] F. Liu, S. Zheng, X. He et al. Highly Sensitive Detection of Polarized Light Using Anisotropic 2D ReS2. Advanced Functional Materials, 26, 1169-1177(2016).

    [51] E. Liu, Y. Fu, Y. Wang et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nature Communications, 6, 6991(2015).

    [52] Z. Zhou, M. Long, L. Pan et al. Perpendicular Optical Reversal of the Linear Dichroism and Polarized Photodetection in 2D GeAs. ACS Nano, 12, 12416-12423(2018).

    [53] J. Wei, C. Xu, B. Dong et al. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nature Photonics, 15, 614-621(2021).

    [54] Jie CAO, Qun HAO, Fang-hua ZHANG et al. Research progress of APD three-dimensional imaging lidar. J. Infrared and Laser Engineering, 49, 264-273(2020).

    [55] Xing-yu YANG, Chen LI, Li-ting HAO et al. Research progress and trend analysis of advanced 3D Imaging lidar technology. J. Laser Journal, 40, 1-9(2019).

    [56] Yu-zhi SONG, Chun-qing LU, Li YU. Application research of 3D-TOF camera for detection of space short range targets. J. Aerospace Control and Application, 45, 53-59(2019).

    [57] Chunqing Lu, Yuzhi Song, Yanpeng Wu et al. 3D information acquisition and error analysis based on TOF computational imaging. Infrared and Laser Engineering, 47, 160-166(2018).

    [58] R. Xie, Q. Li, P. Wang et al. Spatial description theory of narrow-band single-carrier avalanche photodetectors. Opt Express, 29, 16432-16446(2021).

    [59] Shu-fang SONG, Xiao-ju WANG, Zhen TIAN. The theory and research advancement of HgCdTe avalanche photodiode arrays. J. Laser & Infrared, 29, 1159-1164(2021).

    [60] M. Entwistle, M. Itzler, J. Chen et al. Geiger-mode APD camera system for single-photon 3D LADAR imaging. Proceedings of SPIE - The International Society for Optical Engineering, 8375(2012).

    [61] J. Rothman, E. De Borniol, O. Gravrand et al. HgCdTe APD-focal plane array development at DEFIR(2010).

    [62] A. Kerlain, G. Bonnouvrier, L. Rubaldo et al. Performance of Mid-Wave Infrared HgCdTe e-Avalanche Photodiodes. Journal of Electronic Materials, 41, 2943-2948(2012).

    [63] H Z Song. Avalanche Photodiode Focal Plane Arrays and Their Application to Laser Detection and Ranging(2018).

    [64] Hao LI, Chun LIN, Song-min ZHOU et al. HgCdTe avalance photodiode FPA. J. Infrared Millim.Waves, 38, 41-44(2019).

    [65] A. Gao, J. Lai, Y. Wang et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nanotechnol, 14, 217-222(2019).

    [66] J. Wen, W. J. Wang, X. R. Chen et al. Origin of large dark current increase in InGaAs/InP avalanche photodiode. Journal of Applied Physics, 123, 161530(2018).

    [67] J. Wen, W. J. Wang, N. Li et al. Light enhancement by metal-insulator-metal plasmonic focusing cavity. Optical and Quantum Electronics, 48, 150(2016).

    [68] J. Wen, W. J. Wang, N. Li et al. Plasmonic optical convergence microcavity based on the metal-insulator-metal microstructure. Applied Physics Letters, 110, 231105(2017).

    [69] S. J. Gibson, B. van Kasteren, B. Tekcan et al. Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection. Nat Nanotechnol, 14, 473-479(2019).

    [70] G. Bulgarini, M. E. Reimer, M. Hocevar et al. Avalanche amplification of a single exciton in a semiconductor nanowire. Nature Photonics, 6, 455-458(2012).

    [71] O. Lopez-Sanchez, D. Dumcenco, E. Charbon et al. arXiv preprint, arXiv, 1411.3232(2014).

    [72] M. R. M. Atalla, S. J. Koester. Black phosphorus avalanche photodetector. 2017 75th Annual Device Research Conference (DRC), pp, 1-2(2017).

    [73] F Capasso. Avalanche Photodiodes with Enhanced Ionization Rates Ratio: Towards a Solid State Photomultiplier. Nuclear Science IEEE Transactions on, 30, 424-428(1983).

    [74] M. Ren, S. Maddox, Y. Chen et al. AlInAsSb/GaSb staircase avalanche photodiode. Applied Physics Letters, 108, 081101(2016).

    [75] A Mair, A Vaziri, G Weihs et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-6(2001).

    [76] J. Leach, B. Jack, J. Romero et al. Quantum Correlations in Optical Angle Orbital Angular Momentum Variables. Science, 329, 662-665(2010).

    [77] Yang-yue LI, Zi-yang CHEN, Hui LIU et al. Generation and interference of vortex beams. J.ACTA Physica Sinica, 59, 1740-1748(2010).

    [78] Z. Y. Chen, G.W. Zhang, L.Z. Rao et al. Determining the Orbital Angular Momentum of Vortex Beam by Young’s Double-Slit Interference Experiment. Chinese Journal of Lasers, 35, 1063-1067(2008).

    [79] H. Zhou, L. Shi, X. Zhang et al. Dynamic interferometry measurement of orbital angular momentum of light. Opt Lett, 39, 6058-6061(2014).

    [80] L. A. Melo, A. J. Jesus-Silva, S. Chavez-Cerda et al. Direct Measurement of the Topological Charge in Elliptical Beams Using Diffraction by a Triangular Aperture. Sci Rep, 8, 6370(2018).

    [81] S. Mei, K. Huang, H. Liu et al. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. Nanoscale, 8, 2227-2233(2016).

    [82] J. Chen, X. Chen, T. Li et al. On-Chip Detection of Orbital Angular Momentum Beam by Plasmonic Nanogratings. Laser & Photonics Reviews, 12(2018).

    [83] X. Zhao, X. Feng, F. Liu et al. A Compound Phase-Modulated Beam Splitter to Distinguish Both Spin and Orbital Angular Momentum. ACS Photonics, 7, 212-220(2019).

    [84] F. Feng, G. Si, C. Min et al. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities. Light: Science & Applications, 9, 95(2020).

    [85] X. Li, T.H. Lan, C.H. Tien et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nature Communications, 3, 998(2012).

    [86] Y. Lu, J. Zhao, R. Zhang et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nature Photonics, 8, 32-36(2013).

    [87] L. W. Luo, N. Ophir, C. P. Chen et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 5, 3069(2014).

    [88] Y. Fu, C. Min, J. Yu et al. Measuring phase and polarization singularities of light using spin-multiplexing metasurfaces. Nanoscale, 11, 18303-18310(2019).

    [89] S. Zhang, P. Huo, W. Zhu et al. Broadband Detection of Multiple Spin and Orbital Angular Momenta via Dielectric Metasurface. Laser & Photonics Reviews, 14, 2000062(2020).

    Jia-Xiang GUO, Run-Zhang XIE, Peng WANG, Tao ZHANG, Kun ZHANG, Hai-Lu WANG, Ting HE, Qing LI, Fang WANG, Xiao-Shuang CHEN, Wei LU, Wei-Da HU. Infrared photodetectors for multidimensional optical information acquisition[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021400
    Download Citation