• Laser & Optoelectronics Progress
  • Vol. 61, Issue 9, 0914005 (2024)
Jiaqi Zhao, Tingting Zhang, Tianjun Zhang, Wenjie Wang*, and Shaoding Liu
Author Affiliations
  • Key Laboratory of Advanced Transducers and Intelligent Control System of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi , China
  • show less
    DOI: 10.3788/LOP231079 Cite this Article Set citation alerts
    Jiaqi Zhao, Tingting Zhang, Tianjun Zhang, Wenjie Wang, Shaoding Liu. Polarization Characterization of Fluorescence Resonance Energy Transfer Optofluidic Lasers[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0914005 Copy Citation Text show less
    References

    [1] Kuswandi B, Huskens J, Verboom W. Optical sensing systems for microfluidic devices: a review[J]. Analytica Chimica Acta, 601, 141-155(2007).

    [2] Sun Y Z, Fan X D. Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers[J]. Angewandte Chemie (International Ed. in English), 51, 1236-1239(2012).

    [3] Lee W, Fan X D. Intracavity DNA melting analysis with optofluidic lasers[J]. Analytical Chemistry, 84, 9558-9563(2012).

    [4] Tan X T, Chen Q S, Zhu H B et al. Fast and reproducible ELISA laser platform for ultrasensitive protein quantification[J]. ACS Sensors, 5, 110-117(2020).

    [5] Wang Z, Liu Y Z, Gong C Y et al. Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay[J]. PhotoniX, 2, 18(2021).

    [6] Bragheri F, Minzioni P, Vazquez R M et al. Optofluidic integrated cell sorter fabricated by femtosecond lasers[J]. Lab on a Chip, 12, 3779-3784(2012).

    [7] Wu D, Niu L G, Wu S Z et al. Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate[J]. Lab on a Chip, 15, 1515-1523(2015).

    [8] Mashaghi S, van Oijen A M. Droplet microfluidics for kinetic studies of viral fusion[J]. Biomicrofluidics, 10, 024102(2016).

    [9] Churski K, Kaminski T S, Jakiela S et al. Rapid screening of antibiotic toxicity in an automated microdroplet system[J]. Lab on a Chip, 12, 1629-1637(2012).

    [10] Yang J, Guo L J. Optical sensors based on active microcavities[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 143-147(2006).

    [11] Yang X, Luo Y H, Liu Y L et al. Mass production of thin-walled hollow optical fibers enables disposable optofluidic laser immunosensors[J]. Lab on a Chip, 20, 923-930(2020).

    [12] Duan R, Li Y Z, He Y C et al. Quantitative and sensitive detection of lipase using a liquid crystal microfiber biosensor based on the whispering-gallery mode[J]. The Analyst, 145, 7595-7602(2020).

    [13] Lowery T J, Rubin S M, Ruiz E J et al. Applications of laser-polarized 129Xe to biomolecular assays[J]. Magnetic Resonance Imaging, 21, 1235-1239(2003).

    [14] Zagdoun A, Casano G, Ouari O et al. Large molecular weight nitroxide biradicals providing efficient dynamic nuclear polarization at temperatures up to 200 K[J]. Journal of the American Chemical Society, 135, 12790-12797(2013).

    [15] Yuan Z Y, Cheng X, Zhou Y K et al. Distinguishing small molecules in microcavity with molecular laser polarization[J]. ACS Photonics, 7, 1908-1914(2020).

    [16] Aas M, Chen Q S, Jonáš A et al. Optofluidic FRET lasers and their applications in novel photonic devices and biochemical sensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 188-202(2016).

    [17] Li H X, Lin F R, Xu Y J et al. Elucidation of interaction between OVCAR-3 cell membranes and BSA-DOX nanoparticles based on FLIM-FRET[J]. Chinese Journal of Lasers, 50, 0307112(2023).

    [18] Gao L, Zhai S X, Sun H et al. Automatic QuanTi-FRET method for measuring system correction factors based on single imaging[J]. Chinese Journal of Lasers, 49, 0507203(2022).

    [19] Ahamed M B, Palanisamy P K. Nd: YAG laser pumped energy transfer distributed feedback dye laser in Rhodamine 6G and Acid blue 7 dye mixture[J]. Optics Communications, 213, 67-80(2002).

    [20] Sabanayagam C R, Eid J S, Meller A. Using fluorescence resonance energy transfer to measure distances along individual DNA molecules: corrections due to nonideal transfer[J]. The Journal of Chemical Physics, 122, 061103(2005).

    [21] Blanco M, Walter N G. Analysis of complex single-molecule FRET time trajectories[J]. Methods in Enzymology, 472, 153-178(2010).

    [22] Heyduk T. Measuring protein conformational changes by FRET/LRET[J]. Current Opinion in Biotechnology, 13, 292-296(2002).

    [23] Pollok B A, Heim R. Using GFP in FRET-based applications[J]. Trends in Cell Biology, 9, 57-60(1999).

    [24] Wang Y P, Lang M C, Lu J S et al. Demonstration of intracellular real-time molecular quantification via FRET-enhanced optical microcavity[J]. Nature Communications, 13, 6685(2022).

    [25] Li J, Wang J L, Liu S Y et al. Amplified FRET nanoflares: an endogenous mRNA-powered nanomachine for intracellular microRNA imaging[J]. Angewandte Chemie, 132, 20279-20286(2020).

    [26] Chen Q S, Zhang X W, Sun Y Z et al. Highly sensitive fluorescent protein FRET detection using optofluidic lasers[J]. Lab on a Chip, 13, 2679-2681(2013).

    [27] Chen Q S, Liu H J, Lee W et al. Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control[J]. Lab on a Chip, 13, 3351-3354(2013).

    [28] Zhang X W, Lee W, Fan X D. Bio-switchable optofluidic lasers based on DNA Holliday junctions[J]. Lab on a Chip, 12, 3673-3675(2012).

    [29] Wang Y H, Bao L, Liu Z H et al. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma[J]. Analytical Chemistry, 83, 8130-8137(2011).

    [30] Chen Q S, Kiraz A, Fan X D. Optofluidic FRET lasers using aqueous quantum dots as donors[J]. Lab on a Chip, 16, 353-359(2016).

    [31] Biffi G, Tannahill D, McCafferty J et al. Quantitative visualization of DNA G-quadruplex structures in human cells[J]. Nature Chemistry, 5, 182-186(2013).

    [32] Juskowiak B, Galezowska E, Zawadzka A et al. Fluorescence anisotropy and FRET studies of G-quadruplex formation in presence of different cations[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64, 835-843(2006).

    [33] Ergin E, Dogan A, Parmaksiz M et al. Time-resolved fluorescence resonance energy transfer[TR-FRET]assays for biochemical processes[J]. Current Pharmaceutical Biotechnology, 17, 1222-1230(2016).

    [34] De Rache A, Mergny J L. Assessment of selectivity of G-quadruplex ligands via an optimised FRET melting assay[J]. Biochimie, 115, 194-202(2015).

    [35] Lee J Y, Okumus B, Kim D S et al. Extreme conformational diversity in human telomeric DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 18938-18943(2005).

    [36] Zhang T T, Hou M D, Jia Z N et al. Laser-based high resolution melting analysis for studying G-quadruplexes[J]. Laser & Optoelectronics Progress, 59, 0717002(2022).

    [37] De Cian A, Guittat L, Kaiser M et al. Fluorescence-based melting assays for studying quadruplex ligands[J]. Methods, 42, 183-195(2007).

    [38] Lin Y W, Chiu T C, Chang H T. Laser-induced fluorescence technique for DNA and proteins separated by capillary electrophoresis[J]. Journal of Chromatography B, 793, 37-48(2003).

    [39] Chaires J B. Human telomeric G-quadruplex: thermodynamic and kinetic studies of telomeric quadruplex stability[J]. The FEBS Journal, 277, 1098-1106(2010).

    [40] Lin J, Yan Y Y, Ou T M et al. Effective detection and separation method for G-quadruplex DNA based on its specific precipitation with Mg2+[J]. Biomacromolecules, 11, 3384-3389(2010).

    Jiaqi Zhao, Tingting Zhang, Tianjun Zhang, Wenjie Wang, Shaoding Liu. Polarization Characterization of Fluorescence Resonance Energy Transfer Optofluidic Lasers[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0914005
    Download Citation