• Journal of Semiconductors
  • Vol. 40, Issue 12, 120301 (2019)
Hideki Hirayama
Author Affiliations
  • RIKEN, Wako, Saitama 351-0198, Japan
  • show less
    DOI: 10.1088/1674-4926/40/12/120301 Cite this Article
    Hideki Hirayama. Research status and prospects of deep ultraviolet devices[J]. Journal of Semiconductors, 2019, 40(12): 120301 Copy Citation Text show less
    References

    [1] A Khan, K Balakrishnan, T Katona. Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics, 2, 77(2008).

    [2] D Li, K Jiang, X Sun et al. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv Opt Photonics, 10, 43(2018).

    [3] T Takano, T Mino, J Sakai et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl Phys Express, 10, 031002(2017).

    [4] J Hodgkinson, R P Tatam. Optical gas sensing: a review. Meas Sci Technol, 24, 012004(2013).

    [5] E Allaria, D Castronovo, P Cinquegrana et al. Two-stage seeded soft-X-ray free-electron laser. Nat Photonics, 7, 913(2013).

    [6] M Kneissl, T Y Seong, J Han et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat Photonics, 13, 233(2019).

    [7] Z Zhang, M Kushimoto, T Sakai et al. A 271.8 nm deep-ultraviolet laser diode for room temperature operation. Appl Phys Express, 12, 124003(2019).

    [8] K Ban, J I Yamamoto, K Takeda et al. Internal quantum efficiency of whole-composition-range AlGaN multi-quantum wells. Appl Phys Express, 4, 052101(2011).

    [9] M Kneissl, T Kolbe, C Chua et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol, 26, 014036(2011).

    [10] J Simon, V Protasenko, C Lian et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Sciences, 327, 60(2009).

    [11] H Chang, Z Chen, W Li et al. Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Appl Phys Lett, 114, 091107(2019).

    [12] H Hirayama, T Yatabe, N Noguchi et al. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett, 91, 71901(2007).

    [13] W Tian, W Y Yan, J N Dai et al. Effect of growth temperature of an AlN intermediate layer on the growth mode of AlN grown by MOCVD. J Phys D, 46, 065303(2013).

    [14] M Shatalov, W Sun, A Lunev et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express, 5, 082101(2012).

    [15] M Djavid, Z Mi. Ehancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Appl Phys Lett, 108, 051102(2005).

    [16] S R Jeon, Z Ren, G Cui et al. Investigation of Mg doping in high-Al content p-type AlxGa1–xN (0.3 x0.5). Appl Phys Lett, 86, 082107(2005).

    [17] M L Nakarmi, K H Kim, J Li et al. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl Phys Lett, 82, 3041(2003).

    [18] H X Zhong, J J Shi, M Zhang et al. Improving p-type doping efficiency in Al0.83Ga0.17N alloy substituted by nanoscale (AlN)5/(GaN)1 superlattice with MgGa-ON δ-codoping: Role of O-atom in GaN monolayer. AIP Adv, 5, 227(2015).

    Hideki Hirayama. Research status and prospects of deep ultraviolet devices[J]. Journal of Semiconductors, 2019, 40(12): 120301
    Download Citation