• Opto-Electronic Advances
  • Vol. 3, Issue 10, 190042-1 (2020)
Yuechen Jia*, Shixiang Wang, and Feng Chen
Author Affiliations
  • School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • show less
    DOI: 10.29026/oea.2020.190042 Cite this Article
    Yuechen Jia, Shixiang Wang, Feng Chen. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application[J]. Opto-Electronic Advances, 2020, 3(10): 190042-1 Copy Citation Text show less
    References

    [1] G Lifante. Integrated Photonics: Fundamentals(2003).

    [2] B E A Saleh, M C Teich. Fundamentals of Photonics(2019).

    [3] C Grivas. Optically pumped planar waveguide lasers, Part Ⅰ: Fundamentals and fabrication techniques. Prog Quant Electron, 35, 159-239(2011).

    [4] C Grivas. Optically pumped planar waveguide lasers: Part ò: Gain media, laser systems, and applications. Prog Quant Electron, 45-46, 3-160(2016).

    [5] Y C Jia, F Chen. Compact solid-state waveguide lasers operating in the pulsed regime: a review[Invited]. Chin Opt Lett, 17, 012302(2019).

    [6] D N Nikogosyan. Nonlinear Optical Crystals: A Complete Survey(2005).

    [7] J I Mackenzie. Dielectric solid-state planar waveguide lasers: a review. IEEE J Sel Top Quantum Electron, 13, 626-637(2007).

    [8] F Chen. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser Photonics Rev, 6, 622-640(2012).

    [9] M Zhang, C Wang, R Cheng, A Shams-Ansari, M Lončar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536-1537(2017).

    [10] R Wolf, Y C Jia, S Bonaus, C S Werner, S J Herr et al. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica, 5, 872-875(2018).

    [11] R Osellame, G Cerullo, R Ramponi. Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, Berlin Heidelberg, 2012)(2012).

    [12] F Chen, de Aldana J R Vázquez. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev, 8, 251-275(2014).

    [13] K Sugioka, Y Cheng. Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications(2014).

    [14] D Choudhury, J R Macdonald, A K Kar. Ultrafast laser inscription: perspectives on future integrated applications. Laser Photonics Rev, 8, 827-846(2014).

    [15] S Gross, M J Withford. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics, 4, 332-352(2015).

    [16] K M Davis, K Miura, N Sugimoto, K Hirao. Writing waveguides in glass with a femtosecond laser. Opt Lett, 21, 1729-1731(1996).

    [17] S Gross, M Dubov, M J Withford. On the use of the Type Ⅰ and ò scheme for classifying ultrafast laser direct-write photonics. Opt Express, 23, 7767-7770(2015).

    [18] M Ams, P Dekker, S Gross, M J Withford. Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses. Nanophotonics, 6, 743-763(2017).

    [19] J Burghoff, S Nolte, A Tünnermann. Origins of waveguiding in femtosecond laser-structured LiNbO3. Appl Phys A, 89, 127-132(2007).

    [20] J Thomas, M Heinrich, P Zeil, V Hilbert, K Rademaker et al. Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform. Phys Status Solidi A, 208, 276-283(2011).

    [21] J R Macdonald, R R Thomson, S J Beecher, N D Psaila, H T Bookey et al. Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe. Opt Lett, 35, 4036-4038(2010).

    [22] A Rodenas, A K Kar. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing. Opt Express, 19, 17820-17833(2011).

    [23] R Y He, I Hernández-Palmero, C Romero, de Aldana J R Vázquez, F Chen. Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing. Opt Express, 22, 31293-31298(2014).

    [24] A Ródenas, G A Torchia, G Lifante, E Cantelar, J Lamela et al. Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations. Appl Phys B, 95, 85-96(2009).

    [25] A Ródenas, L M Maestro, M O Ramírez, G A Torchia, L Roso et al. Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides. J Appl Phys, 106, 013110(2009).

    [26] H D Nguyen, A Ródenas, de Aldana J R Vázquez, J Martínez, F Chen et al. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides. Opt Express, 24, 7777-7791(2016).

    [27] A G Okhrimchuk, A V Shestakov, I Khrushchev, J Mitchell. Depressed cladding, buried waveguide laser formed in a YAG: Nd3+ crystal by femtosecond laser writing. Opt Lett, 30, 2248-2250(2005).

    [28] H L Liu, Y C Jia, de Aldana J R Vázquez, D Jaque, F Chen. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance. Opt Express, 20, 18620-18629(2012).

    [29] Y C Jia, F Chen, de Aldana J R Vázquez. Efficient continuous-wave laser operation at 1064 nm in Nd: YVO4 cladding waveguides produced by femtosecond laser inscription. Opt Express, 20, 16801-16806(2012).

    [30] Y C Jia, R Y He, de Aldana J R Vázquez, H L Liu, F Chen. Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers. Opt Express, 27, 30941-30951(2019).

    [31] F Chen, de Aldana J R Vázquez. Laser-written 3D crystalline photonic devices. SPIE Newsroom(2015).

    [32] L Gui, B X Xu, T C Chong. Microstructure in lithium niobate by use of focused femtosecond laser pulses. IEEE Photonics Technol Lett, 16, 1337-1339(2004).

    [33] J M Lv, Y C Cheng, W H Yuan, X T Hao, F Chen. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal. Opt Mater Express, 5, 1274-1280(2015).

    [34] L Q Li, W J Nie, Z Q Li, C Romero, R I Rodriguez-Beltrán et al. Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band. Opt Express, 25, 24236-24241(2017).

    [35] R Osellame, M Lobino, N Chiodo, M Marangoni, G Cerullo et al. Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient. Appl Phys Lett, 90, 241107(2007).

    [36] B Zhang, B C Xiong, Z Q Li, L Q Li, J M Lv et al. Mode tailoring of laser written waveguides in LiNbO3 crystals by multi-scan of femtosecond laser pulses. Opt Mater, 86, 571-575(2018).

    [37] J Burghoff, C Grebing, S Nolte, A Tünnermann. Waveguides in lithium niobate fabricated by focused ultrashort laser pulses. Appl Surf Sci, 253, 7899-7902(2007).

    [38] T Calmano, A G Paschke, S Müller, C Kränkel, G Huber. Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription. Opt Express, 21, 25501-25508(2013).

    [39] T Calmano, C Kränkel, G Huber. Laser oscillation in Yb:YAG waveguide beam-splitters with variable splitting ratio. Opt Lett, 40, 1753-1756(2015).

    [40] A Courvoisier, M J Booth, P S Salter. Inscription of 3D waveguides in diamond using an ultrafast laser. Appl Phys Lett, 109, 031109(2016).

    [41] D A Presti, V Guarepi, F Videla, G A Torchia. Design and implementation of an integrated optical coupler by femtosecond laser written-waveguides in LiNbO3. Opt Laser Eng, 126, 105860(2020).

    [42] M Heinrich, A Szameit, F Dreisow, S Döring, J Thomas et al. Evanescent coupling in arrays of type ò femtosecond laser-written waveguides in bulk x-cut lithium niobate. Appl Phys Lett, 93, 101111(2008).

    [43] H L Liu, Y C Yao, P F Wu, Y C Jia. Femtosecond laser direct writing of evanescently-coupled planar waveguide laser arrays. Opt Mater Express, 9, 4447-4455(2019).

    [44] J G Ajates, C Romero, G R Castillo, F Chen, de Aldana J R Vázquez. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals. Opt Mater, 72, 220-225(2017).

    [45] G R Castillo, L Labrador-Páez, F Chen, S Camacho-López, de Aldana J R Vázquez. Depressed-cladding 3-D waveguide arrays fabricated with femtosecond laser pulses. J Lightwave Technol, 35, 2520-2525(2017).

    [46] J G Ajates, de Aldana J R Vázquez, F Chen, A Ródenas. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides. Opt Mater Express, 8, 1890-1901(2018).

    [47] S L Li, Y K Ye, C Y Shen, H L Wang. Femtosecond laser inscribed cladding waveguide structures in LiNbO3 crystal for beam splitters. Opt Eng, 57, 117103(2018).

    [48] Y Y Ren, L M Zhang, H G Xing, C Romero, de Aldana J R Vázquez et al. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal. Opt Laser Technol, 103, 82-88(2018).

    [49] Y C Jia, C Cheng, de Aldana J R Vázquez, G R Castillo, Rosal Rabes B del et al. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes. Sci Rep, 4, 5988(2014).

    [50] Y C Jia, C Cheng, de Aldana J R Vázquez, F Chen. Three-dimensional waveguide splitters inscribed in Nd:YAG by femtosecond laser writing: realization and laser emission. J Lightwave Technol, 34, 1328-1332(2016).

    [51] J M Lv, Y Z Cheng, de Aldana J R Vázquez, X T Hao, F Chen. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal. J Lightwave Technol, 34, 3587-3591(2016).

    [52] W J Nie, R Y He, C Cheng, U Rocha, de Aldana J R Vázquez et al. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing. Opt Lett, 41, 2169-2172(2016).

    [53] E Kifle, X Mateos, de Aldana J R Vázquez, A Ródenas, P Loiko et al. Femtosecond-laser-written Tm:KLu(WO4)2 waveguide lasers. Opt Lett, 42, 1169-1172(2017).

    [54] Y Y Ren, L M Zhang, J M Lv, Y F Zhao, C Romero et al. Optical-lattice-like waveguide structures in Ti:Sapphire by femtosecond laser inscription for beam splitting. Opt Mater Express, 7, 1942-1949(2017).

    [55] W J Nie, C Romero, Q M Lu, de Aldana J R Vázquez, F Chen. Implementation of nearly single-mode second harmonic generation by using a femtosecond laser written waveguiding structure in KTiOPO4 nonlinear crystal. Opt Mater, 84, 531-535(2018).

    [56] M Morales-Vidal, Í J Sola, G R Castillo, de Aldana J R Vázquez, B Alonso. Ultrashort pulse propagation through depressed-cladding channel waveguides in YAG crystal: Spatio-temporal characterization. Opt Laser Technol, 123, 105898(2020).

    [57] Q Zhang, M Li, J Xu, Z J Lin, H F Yu et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photonics Res, 7, 503-507(2019).

    [58] Y Liao, J Xu, Y Cheng, Z H Zhou, F He et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt Lett, 33, 2281-2283(2008).

    [59] C Chen, S Akhmadaliev, C Romero, de Aldana J R Vázquez, S Q Zhou et al. Ridge waveguides and Y-branch beam splitters in KTiOAsO4 crystal by 15 Mev oxygen ion implantation and femtosecond laser ablation. J Lightwave Technol, 35, 225-229(2017).

    [60] L Q Li, W J Nie, Z Q Li, Q M Lu, C Romero et al. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications. Sci Rep, 7, 7034(2017).

    [61] A Ródenas, M Gu, G Corrielli, P Paiè, S John et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat Photonics, 13, 105-109(2019).

    [62] C Wang, M Zhang, X Chen, M Bertrand, A Shams-Ansari et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [63] J Burghoff, H Hartung, S Nolte, A Tünnermann. Structural properties of femtosecond laser-induced modifications in LiNbO3. Appl Phys A, 86, 165-170(2007).

    [64] S Ringleb, K Rademaker, S Nolte, A Tünnermann. Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses. Appl Phys B, 102, 59-63(2011).

    [65] D A Presti, V Guarepi, F Videla, A Fasciszewski, G A Torchia. Intensity modulator fabricated in LiNbO3 by femtosecond laser writing. Opt Laser Eng, 111, 222-226(2018).

    [66] H L Liu, C Cheng, C Romero, de Aldana J R Vázquez, F Chen. Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides. Opt Express, 23, 9730-9735(2015).

    [67] H L Liu, de Aldana J R Vázquez, M H Hong, F Chen. Femtosecond laser inscribed Y-branch waveguide in Nd:YAG crystal: fabrication and continuous-wave lasing. IEEE J Sel Top Quantum Electron, 22, 227-230(2016).

    [68] J A Caird, S A Payne, P R Staber, A J Ramponi, L L Chase et al. Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser. IEEE J Quantum Electron, 24, 1077-1099(1988).

    [69] W J Nie, Y C Jia, de Aldana J R Vázquez, F Chen. Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription. Sci Rep, 6, 22310(2016).

    [70] R B Wu, J H Zhang, N Yao, W Fang, L L Qiao et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt Lett, 43, 4116-4119(2018).

    [71] J T Lin, N Yao, Z Z Hao, J H Zhang, W B Mao et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys Rev Lett, 122, 173903(2019).

    [72] A Boes, B Corcoran, L Chang, J Bowers, A Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev, 12, 1700256(2018).

    [73] A Seri, G Corrielli, D Lago-Rivera, A Lenhard, H de Riedmatten et al. Laser-written integrated platform for quantum storage of heralded single photons. Optica, 5, 934-941(2018).

    [74] Y Y Ren, G Brown, A Ródenas, S Beecher, F Chen et al. Mid-infrared waveguide lasers in rare-earth-doped YAG. Opt Lett, 37, 3339-3341(2012).

    [75] G Douglass, A Arriola, I Heras, G Martin, E Le Coarer et al. Novel concept for visible and near infrared spectro-interferometry: laser-written layered arrayed waveguide gratings. Opt Express, 26, 18470-18479(2018).

    [76] B Norris, J Bland-Hawthorn. Astrophotonics: The rise of integrated photonics in astronomy. Opt Photonics News, 30, 26-33(2019).

    Yuechen Jia, Shixiang Wang, Feng Chen. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application[J]. Opto-Electronic Advances, 2020, 3(10): 190042-1
    Download Citation