• Chinese Optics Letters
  • Vol. 20, Issue 4, 041101 (2022)
Weihao Wang1, Xing Zhao1、2、*, Zhixiang Jiang1, and Ya Wen1
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
  • show less
    DOI: 10.3788/COL202220.041101 Cite this Article Set citation alerts
    Weihao Wang, Xing Zhao, Zhixiang Jiang, Ya Wen. Deep learning-based scattering removal of light field imaging[J]. Chinese Optics Letters, 2022, 20(4): 041101 Copy Citation Text show less
    References

    [1] M. Martínez-Corral, B. Javidi. Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems. Adv. Opt. Photon., 10, 512(2018).

    [2] G. Lippmann. Epreuves reversibles, photographies integrales. Comptes Rendus l’Académie des Sci., 444, 446(1908).

    [3] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, P. Hanrahan. Light field photography with a hand-held plenoptic camera(2005).

    [4] M. Levoy, R. Ng, A. Adams, M. Footer, M. Horowitz. Light field microscopy. ACM Trans. Graph., 25, 924(2006).

    [5] M. Levoy, Z. Zhang, I. McDowall. Recording and controlling the 4D light field in a microscope using microlens arrays. J. Microsc., 235, 144(2009).

    [6] M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, M. Levoy. Wave optics theory and 3-D deconvolution for the light field microscope. Opt. Express, 21, 25418(2013).

    [7] R. Prevedel, Y.-G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, A. Vaziri. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods, 11, 727(2014).

    [8] H. Y. Liu, E. Jonas, L. Tian, J. Zhong, B. Recht, L. Waller. 3D imaging in volumetric scattering media using phase-space measurements. Opt. Express, 23, 14461(2015).

    [9] N. C. Pégard, H. Y. Liu, N. Antipa, M. Gerlock, H. Adesnik, L. Waller. Compressive light-field microscopy for 3D neural activity recording. Optica, 3, 517(2016).

    [10] T. Nöbauer, O. Skocek, A. J. Pernía-Andrade, L. Weilguny, F. M. Traub, M. I. Molodtsov, A. Vaziri. Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy. Nat. Methods, 14, 811(2017).

    [11] M. A. Taylor, T. Nöbauer, A. Pernia-Andrade, F. Schlumm, A. Vaziri. Brain-wide 3D light-field imaging of neuronal activity with speckle-enhanced resolution. Optica, 5, 345(2018).

    [12] Y. Chen, B. Xiong, Y. Xue, X. Jin, J. Greene, L. Tian. Design of a high-resolution light field miniscope for volumetric imaging in scattering tissue. Biomed. Opt. Express, 11, 1662(2020).

    [13] Y. Xue, I. Davison, D. Boas, L. Tian. Single-shot 3D wide-field fluorescence imaging with a computational miniature mesoscope. Sci. Adv., 6, eabb7508(2020).

    [14] Y. Zhang, Z. Lu, J. Wu, X. Lin, D. Jiang, Y. Cai, J. Xie, Y. Wang, T. Zhu, X. Ji, Q. Dai. Computational optical sectioning with an incoherent multiscale scattering model for light-field microscopy. Nat. Commun., 12, 6391(2021).

    [15] I. Moon, B. Javidi. Three-dimensional visualization of objects in scattering medium by use of computational integral imaging. Opt. Express, 16, 13080(2008).

    [16] J. Tian, Z. Murez, T. Cui, Z. Zhang, D. Kriegman, R. Ramamoorthi. Depth and image restoration from light field in a scattering medium. IEEE Conference ICCV, 2420(2017).

    [17] K. Yanny, N. Antipa, W. Liberti, S. Dehaeck, K. Monakhova, F. L. Liu, K. Shen, R. Ng, L. Waller. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy. Light Sci. Appl., 9, 171(2020).

    [18] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 6, 921(2019).

    [19] Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. Zhang, H. Wang, A. Ozcan. Deep learning microscopy. Optica, 4, 1437(2017).

    [20] E. Nehme, L. E. Weiss, T. Michaeli, Y. Shechtman. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica, 5, 458(2018).

    [21] A. Sinha, J. Lee, S. Li, G. Barbastathis. Lensless computational imaging through deep learning. Optica, 4, 1117(2017).

    [22] F. Wang, H. Wang, H. Wang, G. Li, G. Situ. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging. Opt. Express, 27, 25560(2019).

    [23] F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, G. Situ. Phase imaging with an untrained neural network. Light Sci. Appl., 9, 77(2020).

    [24] S. Yuan, Y. Hu, Q. Hao, S. Zhang. High-accuracy phase demodulation method compatible to closed fringes in a single-frame interferogram based on deep learning. Opt. Express, 29, 2538(2021).

    [25] Z. Wang, L. Zhu, H. Zhang, G. Li, C. Yi, Y. Li, Y. Yang, Y. Ding, M. Zhen, S. Gao, T. K. Hsiai, P. Fei. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nat. Methods, 18, 551(2021).

    [26] N. Wagner, F. Beuttenmueller, N. Norlin, J. Gierten, J. C. Boffi, J. Wittbrodt, M. Weigert, L. Hufnagel, R. Prevedel, A. Kreshuk. Deep learning-enhanced light-field imaging with continuous validation. Nat. Methods, 18, 557(2021).

    [27] S. Li, M. Deng, J. Lee, A. Sinha, G. Barbastathis. Imaging through glass diffusers using densely connected convolutional networks. Optica, 5, 803(2018).

    [28] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181(2018).

    [29] M. Lyu, H. Wang, G. Li, S. Zheng, G. Situ. Learning-based lensless imaging through optically thick scattering media. Adv. Photon., 1, 036002(2019).

    [30] X. Lai, Q. Li, Z. Chen, X. Shao, J. Pu. Reconstructing images of two adjacent objects passing through scattering medium via deep learning. Opt. Express, 29, 43280(2021).

    [31] H. Li, C. Guo, D. Kim-Holzapfel, W. Li, Y. Altshuller, B. Schroeder, W. Liu, Y. Meng, J. B. French, K.-I. Takamaru, M. A. Frohman, S. Jia. Fast, volumetric live-cell imaging using high-resolution light-field microscopy. Biomed. Opt. Express, 10, 29(2019).

    [32] M. J. Bastiaans. The Wigner distribution function applied to optical signals and systems. Opt. Commun., 25, 26(1978).

    [33] J. Jönsson, E. Berrocal. Multi-scattering software: part I: online accelerated Monte Carlo simulation of light transport through scattering media. Opt. Express, 28, 37612(2020).

    [34] K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition, 770(2016).

    [35] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, 234(2015).

    [36] W. Wang, Z. Wang, Y. Wen, L. Song, X. Zhao, J. Yang. A method of 3D light field imaging through single layer of weak scattering media basd on deep learning. Proc. SPIE, 11438, 114380Y(2020).

    [37]

    [38] A. G. Asuero, A. Sayago, A. G. González. The correlation coefficient: an overview. Crit. Rev. Anal. Chem., 36, 41(2006).

    [39] W. Zhou, A. C. Bovik. Mean squared error: love it or leave it? A new look at Signal fidelity measures. IEEE Signal Process. Mag., 26, 98(2009).

    Data from CrossRef

    [1] Chen Wang, Jiayan Zhuang, Sichao Ye, Wei Liu, Yaoyao Yuan, Hongman Zhang, Jiangjian Xiao. An Unknown Hidden Target Localization Method Based on Data Decoupling in Complex Scattering Media. Photonics, 9, 956(2022).

    Weihao Wang, Xing Zhao, Zhixiang Jiang, Ya Wen. Deep learning-based scattering removal of light field imaging[J]. Chinese Optics Letters, 2022, 20(4): 041101
    Download Citation