• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 5, 583 (2020)
Tian XIE1、2, Xin-Hui YE1、2, Hui XIA2, Ju-Zhu LI2、3, Shuai-Jun ZHANG1、2, Xin-Yang JIANG2、4, Wei-Jie DENG2、4, Wen-Jing WANG2、3, Yu-Ying LI2, Wei-Wei LIU2, Xiang LI1、*, and Tian-Xin LI2、*
Author Affiliations
  • 1School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai200093, China
  • 2State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
  • 3Mathematics and Science College, Shanghai Normal University, Shanghai200234, China
  • 4School of Physical Science and Technology, Shanghai Tech University, Shanghai201210, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.05.008 Cite this Article
    Tian XIE, Xin-Hui YE, Hui XIA, Ju-Zhu LI, Shuai-Jun ZHANG, Xin-Yang JIANG, Wei-Jie DENG, Wen-Jing WANG, Yu-Ying LI, Wei-Wei LIU, Xiang LI, Tian-Xin LI. Research progress of room temperature semiconductor infrared photodetectors[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 583 Copy Citation Text show less
    References

    [1] P Wang, H Xia, Q Li et al. Sensing Infrared Photons at Room Temperature: From Bulk Materials to Atomic Layers. Small, 15, 1904396(2019).

    [2] R Antoni. History of infrared detectors. Opto-Electronics Review, 20, 279-308(2012).

    [3] R Antoni. Infrared detectors: status and trends. Progress in Quantum Electronics, 27, 59-210(2003).

    [4] L T Chee, M Hooman. Emerging technologies for high performance infrared detectors. Nanophotonics, 7, 169-197,(2018).

    [5] R Antoni. Infrared detectors: an overview. Infrared Physics & Technology, 43, 187-210(2002).

    [6] M Potrowski, R Antoni. HOT infrared photodetectors. Opto-Electronics Review, 21, 239-257(2013).

    [7] S Thomas, W B James. High Performance Focal Plane Arrays for Space Applications. Optics and Photonics News, 19, 22-27(2008).

    [8] M Pitrowski, R Antoni. Performance comparison of barrier detectors and HgCdTe photodiodes. Optical Engineering, 53, 106105(2014).

    [9] E T William. 'Rule 07’ Revisited: Still a Good Heuristic Predictor of p/n HgCdTe Photodiode Performance. Journal of Electronic Material, 39, 1030-1035(2008).

    [10] M Machael, G Jon, W Chad et al. Low dark current InGaAs detector arrays for night vision and astronomy, 7298, 72983F(2009).

    [11] M Machael, H Andrew, G Jon et al. InGaAs focal plane arrays for low light level SWIR imaging, 8012, 801221(2011).

    [12] H Yuan, M Mike, J Zhang et al. Low dark current small pixel large format InGaAs 2D photodetector array development at Teledyne Judson Technologies, 8353, 91-98(2012).

    [13] Ping Yuan, Chang James et al. InGaAs PIN arrays. of SPIE, 9070, 71-76(2014).

    [14] D B Eric, G Fabrice et al. pixel hybrid InGaAs image sensor for night vision. of SPIE, 8353, 835307-512(2012).

    [15] A Rouvié, J Coussement, O Huet et al. InGaAs focal plane array developments and perspectives, 9451, 945105(2015).

    [16] R Fraenkel, E Berkowicz, L Bykov et al. High Definition 10μm pitch InGaAs detector with Asynchronous Laser Pulse Detection mode, 9819, 981903(2016).

    [18] A Zemel, M Gallant. Current-voltage characteristics of metalorganic chemical vapor deposition InP/InGaAs p-i-n photodiodes: The influence of finite dimensions and heterointerfaces. Journal of Applied Physics, 64, 6552-6561(1988).

    [19] S R Forrest. Performance of In0.53Ga0.47As/InP photodiodes with dark current limited by diffusion generation recombination and tunneling. IEEE Journal of Quantum Electronics, 17, 217-226(1981).

    [20] P Mushini, Wei Huang, Manuel Morales et al. 9819: 98190D-1(2016).

    [21] http://www.judsontechnologies.com/

    [22] Y Arslan, F Oguz, C Besikci. Extended Short Wavelength Infrared In0.83Ga0.17As Focal Plane Array. IEEE Journal of Quantum Electronics, 50, 957(2014).

    [23] X Li, H M Gong, J X Fang et al. The development of InGaAs short wavelength infrared focal plane arrays with high performance. Infrared Phys.Technol, 80, 112-119(2017).

    [24] H E Martin, Hai Nguyen, C R Martin, High resolution et al. 3 megapixel extended wavelength InGaAs, 9451, 945105(2018).

    [25] S M Johnson, D R Rhiger, J P Rosebeck et al. Effect of dislocations on the electrical and optical properties of long‐wavelength infrared HgCdTe photovoltaic detectors. J. Vac. Sci. Technol. B, 10, 1499-1507(1992).

    [26] R Bommena, J Bergeson, D Kodama et al. High-performance SWIR HgCdTe FPA development on silicon substrates, 9070, 907009(2014).

    [27] H Park, D Hansel, A Mukhortova et al. 9974. 99740H-1(2016).

    [28] M Zandian, M Farris, W McLevige et al. Performance of science grade HgCdTe H4RG-15 image sensors, 9915, 99150F(2016).

    [29] H Yuan, Jiawen Zhang et al. 10766. 107660J-1, 320×256-30(2018).

    [30] O Gravrand, L Mollard, O Boulade et al. Ultra low dark current CdHgTe FPAs in the SWIR range at CEA and Sofradir, 8353, 83530C(2012).

    [31] S W Priyalal. 9854. 98540B(2016).

    [32] J Schuster, R E DeWames, E A DeCuir et al. Heterojunction Depth in p+-on-n eSWIR HgCdTe Infrared Detectors: Generation-Recombination Suppression, 9609, 960904(2015).

    [33] X D Wang, W D Hu, X S Chen et al. Dark current simulation of InP/In0.53Ga0.47As/InP p-i-n photodiode. Optical Quantum Electronics, 40, 1261-1266(2008).

    [34] H F Schaake, M A Kinch, D Chandra et al. High-Operating-Temperature MWIR Detector Diodes. J. Electron. Mater., 37, 1401-1405(2008).

    [35] B M Nguyen, Y Cao, J W Adam et al. HOT MWIR detectors on Silicon substrates, 10624, 106240Z(2018).

    [36] S Alexander, Z T David, J H Cory et al. Mid-wavelength infrared InAsSb/InSb nBn detector with extended cut-off wavelength. Appl. Phys. Lett, 109(2016).

    [37] S Alexander, A K Sam, F Anita et al. High operating temperature nBn detector with monolithically integrated microlens. Appl. Phys. Lett, 112, 041105(2018).

    [38] T David, S Alexander, K Arezou et al. Mid-wavelength high operating temperature barrier infrared detector and focal plane array. Appl. Phys. Lett, 113, 021101(2018).

    [39] D Wu, A Dehzangi, M Razeghi. Demonstration of mid-wavelength infrared nBn photodetectors based on type-II InAs/InAs1-xSbx superlattice grown by metalorganic chemical vapor deposition. Appl. Phys. Lett, 115, 0061102(2019).

    [40] G P Joseph, D Roger, P Philip et al. HOT MWIR HgCdTe performance on CZT and alternative substrates, 8353, 83532X(2012).

    [41] Z Tian, R T Hinkey, R Q Yang et al. Interband cascade infrared photodetectors with enhanced electron barriers and p-type superlattice absorbers. J. Appl. Phys, 111, 024510(2012).

    [42] J P Perez, A Evirgen, J Abautret et al. 9370. 93700N-1(2015).

    [43] A Kerlain, A Brunner, D Samgiao et al. 4557-4562. . Electron. Mater, 45-9(2016).

    [44] R Gazit, D Chen, G Gershon et al. 11002. 110021W-1(2019).

    [45] K Malgorzata, K Artur, G Waldemar. MOCVD Grown HgCdTe Barrier Structures for HOT Conditions. IEEE Transactions on Electron Devices, 61, 3803-3807(2014).

    [46] Y Sun, X Han, H Hao et al. 320×256 short/mid-wavelength dual-color infrared focal plane arrays based on type-II InAs/GaSb superlattice. Infrared Phys. Technol, 82, 140-143(2017).

    [47] Y Zhou, J X Chen, Z C Xu et al. High quantum efficiency mid-wavelength interband cascade infrared photodetectors with one and two stages. Semiconductor Science and Technology, 31, 085005(2016).

    [48] Y J Chen, X L Chai, Z Y Xie et al. High Speed Mid-Infrared Interband Cascade Photodetector Based on InAs/GaSb Type-II Superlattice. Journal of Lightwave Technology(2019).

    [49] M Kopytko, R Antoni. HgCdTe barrier infrared detectors. Prog. Quantum Electron, 47, 1-18(2016).

    [50] W Huang, L Li, L Lei et al. Minority carrier lifetime in mid-wavelength interband cascade infrared photodetectors. Appl. Phys. Lett, 112, 251107(2018).

    [51] D Palaferri, Y Todorov, A Bigioli et al. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature, 556, 85-88(2018).

    [52] S Velicu, C H Grein, P Y Emelie et al. MWIR and LWIR HgCdTe Infrared Detectors Operated with Reduced Cooling Requirements. J. Electron. Mater, 39, 873-881(2010).

    [53] L Lei, L Li, H Ye et al. Long wavelength interband cascade infrared photodetectors operating at high temperatures. J. Appl. Phys, 120, 193102(2016).

    [54] K Michalczewski, M Pitrowski, C H Wu et al. Demonstration of HOT LWIR T2SL InAs/InAsSb photodetectors grown on GaAs substrate. Infrared Physics & Technology, 95, 222-226(2018).

    [55] K Michalczewski, A Keblowski, W Gawron et al. LWIR HgCdTe barrier photodiode with Auger-suppression. Semicond. Sci. Technol, 31, 035025(2016).

    [56] http://www.vigo.com.pl/

    [57] F R Giorgetta, E Baumann, M Graf et al. Quantum Cascade Detectors. IEEE J. Quantum Electron, 45, 1039-1052(2009).

    [58] P Reininger, B Schwarz, H Detz et al. Diagonal-transition quantum cascade detector. Appl. Phys. Lett, 105, 091108(2014).

    [59] R Antoni, M Kopytko, M Pitrowski. Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes. Appl. Optics, 57, D11-D19(2018).

    [60] W Huang, S Rassela, L Li et al. A unified figure of merit for interband and intersubband cascade devices. Infrared Phys. Technol, 96, 298-301(2019).

    [61] Z T David, S Alexander, A Khoshakhlagh et al. 10177. 101770N-1-10(2017).

    [62] H Sharifi, M Roebuck, S Terterian et al. 10177. 101770U-1-6(2017).

    [63] P Y Delaunay, B Z Nosho, A R Gurga et al. 10177. 101770T-1-12(2017).

    [64] R Antoni, M Pitrowski, M Kopytko. Type-II superlattice photodetectors versus HgCdTe photodiodes. Progress in Quantum Electronics, 68, 100228(2019).

    Tian XIE, Xin-Hui YE, Hui XIA, Ju-Zhu LI, Shuai-Jun ZHANG, Xin-Yang JIANG, Wei-Jie DENG, Wen-Jing WANG, Yu-Ying LI, Wei-Wei LIU, Xiang LI, Tian-Xin LI. Research progress of room temperature semiconductor infrared photodetectors[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 583
    Download Citation